【MATLAB第32期】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现(持续更新)

简介: 【MATLAB第32期】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现(持续更新)

MATLAB第32期】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现(持续更新)

本文敏感性分析主要分析分类问题(fisher、rf、arf、nca等)。

一、降维方法(分类)

常见的降维方法:

常见的敏感性分析法:

一).全局敏感性分析(sobol、蒙特卡洛方法)


(二).非全局敏感性分析

1.变量筛选(Fisher算法、临近成分分析NCA、RF随机森林、ARF自适应随机森林)

二、案例数据

案例数据classdata 3998×22 ,前21列为变量,第22列为标签,案例采用2分类,即[1,2],多分类也满足。

三、实际应用

(1)Fisher算法

%% 1.Fisher
addpath('D:特征排序\Fisher')
load classdata
ContributeRate=0.9;
id=randperm(size(classdata,1));%数据打乱
classdata=classdata(id,:);% 数据打乱重组
xtrain=classdata(:,1:end-1);% 输入变量
ytrain=classdata(:,end);%输出标签
[W] = Fisher_Score(xtrain,ytrain) ;
plot2

(2)近邻成分分析NCA(用于分类)

%% (2)近邻成分分析NCA(用于分类)
addpath('D:\特征排序\NCA')
load classdata
ContributeRate=0.9;
[xx,mdl]=myfscnca(xtrain,ytrain,0.9);
xnca=classdata(:,xx);

(3)临近成分分析NCA

%% (3)近邻成分分析NCA
addpath('D:\特征排序\NCA')
ContributeRate=0.9;
xtrain =data(:,1:end-1);
ytrain =data(:,end);
[xx,mdl]=myfsrnca(xtrain,ytrain,0.9);
xnca=data(:,xx);

(3)随机森林RF

%% (3)随机森林RF
addpath('D:\特征排序\RF')
load classdata
ContributeRate=0.9;
[XT,RFModel,w]= mycrf(classdata,ContributeRate);
xrf=classdata(:,XT);

(4)自适应随机森林ARF

%% (4)自适应随机森林ARF
addpath('D:\小论文文件包最终版\基坑与算法文献\副业\特征排序\ARF')
load classdata
ContributeRate=0.9;
params.RFLeaf=[5,10,20,50,100,200,500]; %RFLeaf定义初始的叶子节点个数,这里设置了从5到500。
params.Maxepoch=500; % 选择叶子节点个数对应的最大训练步数
[XT,RFModel,w,params]= mycarf(classdata,ContributeRate,params);
xarf=classdata(:,XT);

nTree = 20;nLeaf = 5;

四、代码获取

私信回复‘32’即可获取下载链接。

目录
打赏
0
0
0
0
266
分享
相关文章
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
MATLAB学习之旅:数据统计与分析
在MATLAB中,我们掌握了数据导入、处理及插值拟合等基础技能。接下来,我们将深入数据统计与分析领域,学习描述性统计量(如均值、标准差)、数据分布分析(如直方图、正态概率图)、数据排序与排名、数据匹配查找以及数据可视化(如箱线图、散点图)。这些工具帮助我们挖掘数据中的有价值信息,揭示数据的奥秘,为后续数据分析打下坚实基础。
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
272 13
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
118 5
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
94 0
|
7月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
298 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码