《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3)

《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(2) https://developer.aliyun.com/article/1228279



2. 建设湖仓一体

image.png


基于 Hive 的数据仓库主要存在以下几个痛点:  


首先是时效性,目前基于 Hive 的数仓绝大部分是 t+1,数据产生后至少要一个小时才能在数仓中查询到。随着公司整体技术能力的提升,很多场景对数据的时效性要求越来越高,比如需要准实时的样本数据来支持模型训练,需要准实时的多维分析来帮助排查点击率下降的根因;


其次是 Hive 2.0 无法支持 upsert 需求,业务库数据入仓只能 t+1 全量同步,数据修正成本很高,同时不支持 upsert 意味着存储层面无法实现批流一体;


最后 Hive 的 Schema 属于写入型,一旦数据写入之后 Schema 就难以变更。  


经过一番选型,汽车之家决定选择基于 Iceberg 来构建湖仓一体架构,如下图所示:


image.png


最底层是基于 Hive Metastore 来统一 Hive 表和 Iceberg 表的元数据,基于 HDFS 来统一 Hive 表和Iceberg 表的存储,这也是湖仓一体的基础。  


往上一层是表格式,即 Iceberg 对自身的定位:介于存储引擎和计算引擎之间的开放的表格式。再往上是计算引擎,目前 Flink 主要负责数据的实时入湖工作, Spark 和 Hive 作为主要的产品引擎。最上面是计算平台,Autostream 支持点击流和日志类的数据实时入湖,AutoDTS 支持关系型数据库中的数据实时入湖,离线平台与 Iceberg 做了集成,支持像使用 Hive 表一样来使用 Iceberg,在提升数据时效性的同时,尽量避免增加额外的使用成本。


image.png


通过Flink+Iceburg+Hive实现湖仓一体架构,流量、内容、线索主题的数据时效性得到了大幅提升,从之前的天级/小时级提升到 10 分钟以内,数仓核心任务的 SLA 提前两个小时完成;同时特征工程得以提效,在不改变原先架构的情况下,模型训练的实效性从天级/小时级提升到 10 分钟级;从业务视角来看,大幅提升了数据分析的效率体验和机器学习推荐的实效。  


3. PyFlink实践

image.png

引入 PyFlink主要是想把 Flink 强大的实时计算能力输出给人工智能团队。人工智能团队由于技术本身的特点,大部分开发人员都是基于 Python 语言开发,而 Python 本身的分布式和多线程支持比较弱,他们需要一个能快速上手又具备分布式计算能力的框架,来简化他们日常的程序开发和维护。  


通过集成 PyFlink 汽车之家实现了对 Python 生态的基础支持,解决了 Python 用户难以开发实时任务的痛点。同时也可以方便地将之前部署的单机程序迁移到实时计算平台上,享受 Flink 强大的分布式计算能力。


未来规划

image.png

未来,汽车之家会持续优化计算资源,让计算资源的利用更加合理化,进一步降低成本。一方面充分利用自动伸缩容的功能,扩展伸缩容策略,实现实时离线计算资源的混部,利用实时离线错峰计算的优势进一步降低实时计算的服务器成本。同时团队也会尝试优化 Yarn 的细粒度资源调度,比如分配给 jobmanager 和 taskmanager 少于一核的资源,做更精细化的优化。  

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
21天前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
54 4
|
20天前
|
存储 数据挖掘 数据处理
巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践
随着数据湖技术的发展,企业纷纷探索其优化潜力。本文分享了巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践。Paimon 支持流式和批处理,提供高性能、统一的数据访问和流批一体的优势。通过示例代码和实践经验,展示了如何高效处理实时数据,解决了数据一致性和故障恢复等挑战。
99 61
|
17天前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
1月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
28 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
1月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
40 3
|
1月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
35 1
|
1月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
32 2
|
1月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
54 1
|
1月前
|
存储 小程序 Apache
10月26日@杭州,飞轮科技 x 阿里云举办 Apache Doris Meetup,探索保险、游戏、制造及电信领域数据仓库建设实践
10月26日,由飞轮科技与阿里云联手发起的 Apache Doris 杭州站 Meetup 即将开启!
54 0
|
3月前
|
Java Spring 安全
Spring 框架邂逅 OAuth2:解锁现代应用安全认证的秘密武器,你准备好迎接变革了吗?
【8月更文挑战第31天】现代化应用的安全性至关重要,OAuth2 作为实现认证和授权的标准协议之一,被广泛采用。Spring 框架通过 Spring Security 提供了强大的 OAuth2 支持,简化了集成过程。本文将通过问答形式详细介绍如何在 Spring 应用中集成 OAuth2,包括 OAuth2 的基本概念、集成步骤及资源服务器保护方法。首先,需要在项目中添加 `spring-security-oauth2-client` 和 `spring-security-oauth2-resource-server` 依赖。
52 0

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多