《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(2)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(2)

《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink  在 众安保险金融业务的应用(1) https://developer.aliyun.com/article/1228201



应用场景

1. 智能营销

image.png


营销平台的最下层是数据源层,包括金融业务数据、保险业务数据、用户行为数据、第三方平台的数据和运营结果数据。离线数据通过 ETL 的方式进入离线数仓,实时数据通过 Flink 的方式进入实时数仓。  


实时离线数仓之上是标签服务层,平台有对离线/实时的标签管理功能,同时平台会对这些标签进行治理管控,比如数据权限的管控,此外,还有标签数据的监控,能够及时发现标签数据的异常,准确掌握标签使用情况的分析统计。  


标签层之上是标签应用层,众安保险有营销 AB 实验室和流量 AB 实验室,它们之间的差异在于,营销 AB 主要居于客群进行营销,无论是基于规则进行客群圈选的静态客群还是通过 Flink 接入的实时客群,都会对这些客群进行流程化的营销和智能的触达。而流量 AB 实验室是基于标签的数据服务能力,用于 APP 端千人千面的个性化推荐。平台还提供了客群画像的分析功能,可以快速找到相似客群和客群的历史营销的数据效果情况,能够更好地协助运营对于客群的甄选和营销。  


通过营销 AB 和流量 AB 实验之后,会有一个效果分析服务来进行实时效果回收,通过效果分析可以及时辅助运营团队进行快速的策略调整。


image.png


目前营销平台的标签总数已经达到 500 个以上,营销任务执行数量每天会有 200 万左右,流量 AB 每天会有 2000 万以上的调用量,主要是给前端提供了资源位的个性化显示和千人千面的业务场景。  


整个营销平台的特征可以总结为三点:  


实时画像。通过定制标准化的实时事件、数据结构,利用 Flink 实时计算的能力,实现自动化的实时标签接入;


智能营销策略。可以让用户直接在营销平台上进行组件化的营销流程的配置,提供丰富的时间策略,还有各种智能的营销通道,同时也支持灵活的、多分支的业务流转,使用一致性哈希分流算法进行用户的 AB 实验;


实时分析。对营销成效进行实时分析,使用 Flink 实现实时效果回收。通过漏斗的分析和业务指标的成效分析能力,能够更好地赋能给营销业务。  



《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink  在 众安保险金融业务的应用(3) https://developer.aliyun.com/article/1228198

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
320 1
|
1月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
95 5
|
2月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
87 0
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
209 0
|
5天前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
245 2
探索Flink动态CEP:杭州银行的实战案例
|
11天前
|
数据处理 数据安全/隐私保护 流计算
Flink 三种时间窗口、窗口处理函数使用及案例
Flink 是处理无界数据流的强大工具,提供了丰富的窗口机制。本文介绍了三种时间窗口(滚动窗口、滑动窗口和会话窗口)及其使用方法,包括时间窗口的概念、窗口处理函数的使用和实际案例。通过这些机制,可以灵活地对数据流进行分析和计算,满足不同的业务需求。
81 27
|
1月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
44 1
|
2月前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
76 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
机器学习【金融风险与风口评估及其应用】
机器学习【金融风险与风口评估及其应用】
106 6
|
2月前
|
机器学习/深度学习 算法 搜索推荐
机器学习及其应用领域【金融领域】
机器学习及其应用领域【金融领域】
56 5

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多