《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(1)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——3.机器学习——众安保险-Flink 在 众安保险金融业务的应用(1)

作者:郭育波


用户背景

众安在线财产保险股份有限公司(以下简称“众安”)是中国首家互联网保险公司,众安总部位于上海,不设任何分支机构,完全通过互联网展业。由“保险+科技”双引擎驱动,众安专注于应用新技术重塑保险价值链,围绕健康、数字生活、消费金融、汽车四大生态,以科技服务新生代,为其提供个性化、定制化、智能化的新保险。  


平台概况

image.png

上图是众安保险的实时计算整体架构图,最下层是数据源层,包括了来自于应用系统的业务数据、应用系统的消息数据、用户行为埋点数据以及应用日志数据,这些数据都会经过 Flink 进入实时数仓。  


实时数仓分为四层:  


第一层是 ODS 层,数据经过 Flink 到 ODS 层后会关联一张原始表,这个表是和数据源一一对应的,然后会有一个视图表对原始数据进行简单的清洗加工;


数据经过 Flink 下发到 DWD 层,DWD 层是基于主题域进行划分的,我们现在划分为用户数据域、营销数据域、信贷数据域和保险数据域等;另外还有一部分是 DIM 层,包含用户相关、产品相关和渠道相关等维表数据,DIM 层的数据会保存到 HBase 中;


经过 DWD 层的数据清洗之后,数据下发到 DWS 层,DWS 层会对数据进行整合汇总,一般会有指标宽表和多维明细宽表;


最后这些数据会进入 ADS 层,服务具体多样的数据应用。这一层包含多样的 OLAP 数据存储引擎,包括使用 ClickHouse 作为大盘实时报表的存储引擎,使用HBase 和阿里云的 TableStore 为用户标签和特征工程提供数据存储服务,以及使用ES服务实时监控场景。

image.png

上图是众安保险的实时计算平台架构图。在任务管理模块里面编辑和提交任务,任务编辑器同时支持 Flink SQL 和 Flink JAR 任务,提供了比较便利的 Flink SQL 编辑功能和调试功能,也支持多种任务启动策略,比如基于 checkpoint、offset、时间点和最早位置等,还支持定时和即时生成 checkpoint 功能。任务提交之后,会通过 Flink 客户端将它提交到我们自建的 CDH 集群里。任务管理服务也会定时从 Yarn 获取任务的实时状态。


监控方面,Flink 会把指标日志数据推送到 PushGateway,Prometheus 获取 PushGateway 这些指标之后会在 Grafana 进行数据的可视化展示。除了对任务异常的状态监控之外,众安还会对资源使用率、消息积压等多种情况进行实时告警。此外 Flink 还支持了比较多的 connector,比如阿里云的 ODPS、TableStore 和 Hologres,也内置了丰富的 UDF 并且支持用户自定义 UDF。









相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
1464 1
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
686 5
|
8月前
|
Java 网络安全 Apache
SshClient应用指南:使用org.apache.sshd库在服务器中执行命令。
总结起来,Apache SSHD库是一个强大的工具,甚至可以用于创建你自己的SSH Server。当你需要在服务器中执行命令时,这无疑是非常有用的。希望这个指南能对你有所帮助,并祝你在使用Apache SSHD库中有一个愉快的旅程!
526 29
|
8月前
|
存储 运维 监控
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
本文总结了阿里妈妈数据技术专家陈亮在Flink Forward Asia 2024大会上的分享,围绕广告业务背景、架构设计及湖仓方案演进展开。内容涵盖广告生态运作、实时数仓挑战与优化,以及基于Paimon的湖仓方案优势。通过分层设计与技术优化,实现业务交付周期缩短30%以上,资源开销降低40%,并大幅提升系统稳定性和运营效率。文章还介绍了阿里云实时计算Flink版的免费试用活动,助力企业探索实时计算与湖仓一体化解决方案。
965 3
阿里妈妈基于 Flink+Paimon 的 Lakehouse 应用实践
|
8月前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
403 6
|
11月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
1387 2
探索Flink动态CEP:杭州银行的实战案例
|
12月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
452 1
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
169 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
422 8
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
206 3

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多