带你读《Elastic Stack 实战手册》之78:——4.2.4.Elasticsearch和Python构建面部识别系统(中)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 带你读《Elastic Stack 实战手册》之78:——4.2.4.Elasticsearch和Python构建面部识别系统(中)

《Elastic Stack 实战手册》——四、应用实践——4.2 可观测性应用场景 ——4.2.4.Elasticsearch和Python构建面部识别系统(上) https://developer.aliyun.com/article/1225806



从图像中检测和编码面部信息

 

使用 face_recognition 库,我们可以从图像中检测人脸,并将人脸特征转换为 128 维向量。

image.png



为此,我们创建一个叫做 getVectorFromPicture.py

 

getVectorFromPicture.py


import face_recognition 
import numpy as np 
import sys
import os
from pathlib import Path
from elasticsearch import Elasticsearch
es = Elasticsearch([{'host':'localhost','port':9200}])
cwd = os.getcwd()
print("cwd: " + cwd)
# Get the images directory
rootdir = cwd + "/images"
print("rootdir: " + rootdir)
for subdir, dirs, files in os.walk(rootdir):
    for file in files:
        print(os.path.join(subdir, file))
        file_path = os.path.join(subdir, file)
        image = face_recognition.load_image_file(file_path)
        # detect the faces from the images
        face_locations = face_recognition.face_locations(image)
        # encode the 128-dimension face encoding for each face in the image
        face_encodings = face_recognition.face_encodings(image, face_locations)
        # Display the 128-dimension for each face detected
        for face_encoding in face_encodings:
            print("Face found ==>  ", face_encoding.tolist())
            print("name: " + Path(file_path).stem)
            name = Path(file_path).stem
            face_encoding = face_encoding.tolist()
            # format a dictionary to be indexed
            e = {
                "face_name": name,
                "face_encoding": face_encoding 
            }
            res = es.index(index = 'faces', doc_type ='_doc', body = e)

首先,我们需要声明的是:你需要修改上面的 Elasticsearch 的地址,如果你的 Elasticsearch不是运行于 localhost:9200。上面的代码非常之简单。它把当前目录下的子目录 images 下的所有文件都扫描一遍,并针对每个文件进行编码。我们使用 Python client API 接口把数据导入到 Elasticsearch 中去。在我们的 images 文件夹中,有四个文件。

 

在导入数据之前,我们需要在 Kibana 中创建一个叫做 faces 的索引:


PUT faces
{
  "mappings": {
  PUT faces
{
  "mappings": {

让我们执行 getVectorFromPicture.py 以获取 Elastic 创始人图像的面部特征表示。

 

python3 getVectorFromPicture.py

image.png

现在,我们可以将面部特征表示存储到 Elasticsearch 中。


image.png


我们可以在 Elasticsearch 中看到四个文档:


GET faces/_count
  "count" : 4,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  }
}

我们也可以查看 faces 索引的文档:

GET faces/_search

image.png



《Elastic Stack 实战手册》——四、应用实践——4.2 可观测性应用场景 ——4.2.4.Elasticsearch和Python构建面部识别系统(下) https://developer.aliyun.com/article/1225804

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
153 55
|
1月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品安全追溯系统的深度学习模型
使用Python实现智能食品安全追溯系统的深度学习模型
65 4
|
22天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
122 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
8天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
2天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
34 5
|
23天前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
37 4
基于Python深度学习的果蔬识别系统实现
|
1月前
|
Python
Python之音乐专辑管理系统
音乐专辑管理系统是一款用于管理和维护音乐专辑信息的应用程序,支持添加、删除、修改和查询专辑详情(如专辑名、艺术家、发行日期及曲目列表)。系统运行需Python 3.x环境,硬件要求较低,适合个人及小型团队使用。
60 4
|
1月前
|
Python
Python实现摇号系统
本文介绍了如何使用Python构建一个简单的摇号系统,包括用户输入、随机抽取、结果展示和日志记录等功能。通过导入`random`、`datetime`和`logging`模块,实现了从参与者名单中随机抽取中奖者,并记录每次摇号的结果,方便后续查看和审计。完整代码示例提供了从功能实现到主程序调用的全过程。
36 2
|
1月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
54 5
|
2月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
235 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。

热门文章

最新文章

相关产品

  • 检索分析服务 Elasticsearch版