带你读《Elastic Stack 实战手册》之78:——4.2.4.Elasticsearch和Python构建面部识别系统(中)

简介: 带你读《Elastic Stack 实战手册》之78:——4.2.4.Elasticsearch和Python构建面部识别系统(中)

《Elastic Stack 实战手册》——四、应用实践——4.2 可观测性应用场景 ——4.2.4.Elasticsearch和Python构建面部识别系统(上) https://developer.aliyun.com/article/1225806



从图像中检测和编码面部信息

 

使用 face_recognition 库,我们可以从图像中检测人脸,并将人脸特征转换为 128 维向量。

image.png



为此,我们创建一个叫做 getVectorFromPicture.py

 

getVectorFromPicture.py


import face_recognition 
import numpy as np 
import sys
import os
from pathlib import Path
from elasticsearch import Elasticsearch
es = Elasticsearch([{'host':'localhost','port':9200}])
cwd = os.getcwd()
print("cwd: " + cwd)
# Get the images directory
rootdir = cwd + "/images"
print("rootdir: " + rootdir)
for subdir, dirs, files in os.walk(rootdir):
    for file in files:
        print(os.path.join(subdir, file))
        file_path = os.path.join(subdir, file)
        image = face_recognition.load_image_file(file_path)
        # detect the faces from the images
        face_locations = face_recognition.face_locations(image)
        # encode the 128-dimension face encoding for each face in the image
        face_encodings = face_recognition.face_encodings(image, face_locations)
        # Display the 128-dimension for each face detected
        for face_encoding in face_encodings:
            print("Face found ==>  ", face_encoding.tolist())
            print("name: " + Path(file_path).stem)
            name = Path(file_path).stem
            face_encoding = face_encoding.tolist()
            # format a dictionary to be indexed
            e = {
                "face_name": name,
                "face_encoding": face_encoding 
            }
            res = es.index(index = 'faces', doc_type ='_doc', body = e)

首先,我们需要声明的是:你需要修改上面的 Elasticsearch 的地址,如果你的 Elasticsearch不是运行于 localhost:9200。上面的代码非常之简单。它把当前目录下的子目录 images 下的所有文件都扫描一遍,并针对每个文件进行编码。我们使用 Python client API 接口把数据导入到 Elasticsearch 中去。在我们的 images 文件夹中,有四个文件。

 

在导入数据之前,我们需要在 Kibana 中创建一个叫做 faces 的索引:


PUT faces
{
  "mappings": {
  PUT faces
{
  "mappings": {

让我们执行 getVectorFromPicture.py 以获取 Elastic 创始人图像的面部特征表示。

 

python3 getVectorFromPicture.py

image.png

现在,我们可以将面部特征表示存储到 Elasticsearch 中。


image.png


我们可以在 Elasticsearch 中看到四个文档:


GET faces/_count
  "count" : 4,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  }
}

我们也可以查看 faces 索引的文档:

GET faces/_search

image.png



《Elastic Stack 实战手册》——四、应用实践——4.2 可观测性应用场景 ——4.2.4.Elasticsearch和Python构建面部识别系统(下) https://developer.aliyun.com/article/1225804

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
打赏
0
0
0
0
52
分享
相关文章
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
176 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
77 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
通义灵码AI程序员实战:从零构建Python记账本应用的开发全解析
本文通过开发Python记账本应用的真实案例,展示通义灵码AI程序员2.0的代码生成能力。从需求分析到功能实现、界面升级及测试覆盖,AI程序员展现了需求转化、技术选型、测试驱动和代码可维护性等核心价值。文中详细解析了如何使用Python标准库和tkinter库实现命令行及图形化界面,并生成单元测试用例,确保应用的稳定性和可维护性。尽管AI工具显著提升开发效率,但用户仍需具备编程基础以进行调试和优化。
166 9
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
213 9
解锁文档管理系统高效检索奥秘:Python 哈希表算法探究
在数字化时代,文档管理系统犹如知识宝库,支撑各行各业高效运转。哈希表作为核心数据结构,通过哈希函数将数据映射为固定长度的哈希值,实现快速查找与定位。本文聚焦哈希表在文档管理中的应用,以Python代码示例展示其高效检索特性,并探讨哈希冲突解决策略,助力构建智能化文档管理系统。
轻松搞定在Python中构建虚拟环境
本教程教你如何使用业界公认的最佳实践,创建一个完全工作的Python开发环境。虚拟环境通过隔离依赖项,避免项目间的冲突,并允许你轻松管理包版本。我们将使用Python 3的内置`venv`模块来创建和激活虚拟环境,确保不同项目能独立运行,不会相互干扰。此外,还将介绍如何检查Python版本、激活和停用虚拟环境,以及使用`requirements.txt`文件共享依赖项。 通过本教程,你将学会: - 创建和管理虚拟环境 - 避免依赖性冲突 - 部署Python应用到服务器 适合新手和希望提升开发环境管理能力的开发者。
139 2
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
128 80

热门文章

最新文章

相关产品

  • 检索分析服务 Elasticsearch版
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等