Python编程:elasticsearch库操作Elasticsearch

简介: Python编程:elasticsearch库操作Elasticsearch

使用Python 的接口库elasticsearch 对ES数据库进行操作

安装

pip install elasticsearch

1、创建新的索引

中文搜索需要制定ik分词器,类似结巴jieba

IK分词器文档: https://github.com/medcl/elasticsearch-analysis-ik

PUT http://localhost:9200/blog
{
    "settings" : {
        "index" : {
            "analysis.analyzer.default.type": "ik_max_word"
        } 
    } 
}

2、检查分词效果

如果没有使用中文分词器,默认单个字符分隔,出现词组说明分词器设置成功

POST http://localhost:9200/blog/_analyze
{"field":"title", "text":"拼多多确认警方成立专案组 实际资损大概率低于千万"}
{
    "tokens": [
        {
            "token": "拼",
            "start_offset": 0,
            "end_offset": 1,
            "type": "CN_CHAR",
            "position": 0
        },
        {
            "token": "多多",
            "start_offset": 1,
            "end_offset": 3,
            "type": "CN_WORD",
            "position": 1
        },
        {
            "token": "确认",
            "start_offset": 3,
            "end_offset": 5,
            "type": "CN_WORD",
            "position": 2
        },
        {
            "token": "警方",
            "start_offset": 5,
            "end_offset": 7,
            "type": "CN_WORD",
            "position": 3
        }
        ...
    ]
}

3、添加数据

from elasticsearch import Elasticsearch
# 实例化
es = Elasticsearch()
# 批量提交数据, 注意格式,一行指令一行数据
bulk_doc = """
{"index":{ "_index": "blog", "_type": "post", "_id": "001" }}
{"title": "比亚迪:今年将推出多款新车型","post_time": "2019-01-21 14:22:58","source": "36氪"}
{"index":{ "_index": "blog", "_type": "post", "_id": "002" }}
{"title": "亚马逊:2018年近20万第三方卖家年销售额超10万美元,同比增长40%","post_time": "2019-01-21 14:21:01","source": "雨果网"}
{"index":{ "_index": "blog", "_type": "post", "_id": "003" }}
{"title": "拼多多确认警方成立专案组 实际资损大概率低于千万","post_time": "2019-01-21 14:15:52","source": "新浪财经"}
"""
result = es.bulk(bulk_doc)
print(result)
"""
{
    "took":30,
    "errors":false,
    "items":[
        {
            "index":{
                "_index":"blog",
                "_type":"post",
                "_id":"001",
                "_version":1,
                "result":"created",
                "_shards":{
                    "total":2,
                    "successful":1,
                    "failed":0
                },
                "_seq_no":0,
                "_primary_term":1,
                "status":201
            }
        }
        ...
    ]
}
"""

4、搜索查询

query_body = {
    "query": {
        "term": {
            "title": "多多"
        }
    }
}
ret = es.search("blog", "post", query_body)
print(ret)
"""
{
    "took":2,
    "timed_out":false,
    "_shards":{
        "total":5,
        "successful":5,
        "skipped":0,
        "failed":0
    },
    "hits":{
        "total":1,
        "max_score":0.2876821,
        "hits":[
            {
                "_index":"blog",
                "_type":"post",
                "_id":"003",
                "_score":0.2876821,
                "_source":{
                    "title":"拼多多确认警方成立专案组 实际资损大概率低于千万",
                    "post_time":"2019-01-21 14:15:52",
                    "source":"新浪财经"
                }
            }
        ]
    }
}
"""

如果不使用分词器,也可以使用短语查询

query_body = {
    "query": {
        "match_phrase": {
            "title": "拼多多"
        }
    }
}


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
6天前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
6天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
6天前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
8天前
|
数据采集 搜索推荐 C语言
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。
|
5天前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
|
25天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
54 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
5天前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
8天前
|
数据采集 人工智能 数据挖掘
Python 编程基础与实战:从入门到精通
本文介绍Python编程语言,涵盖基础语法、进阶特性及实战项目。从变量、数据类型、运算符、控制结构到函数、列表、字典等基础知识,再到列表推导式、生成器、装饰器和面向对象编程等高级特性,逐步深入。同时,通过简单计算器和Web爬虫两个实战项目,帮助读者掌握Python的应用技巧。最后,提供进一步学习资源,助你在Python编程领域不断进步。
|
8天前
|
Python
Python 高级编程与实战:深入理解面向对象与并发编程
本文深入探讨Python的高级特性,涵盖面向对象编程(继承、多态、特殊方法、类与实例属性)、异常处理(try-except、finally)和并发编程(多线程、多进程、异步编程)。通过实战项目如聊天服务器和异步文件下载器,帮助读者掌握这些技术,编写更复杂高效的Python程序。
|
8天前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。

热门文章

最新文章

推荐镜像

更多