【Pytorch神经网络实战案例】10 搭建深度卷积神经网络

简介: 【Pytorch神经网络实战案例】10 搭建深度卷积神经网络

6eb9cb2dde3a4266948bfd6722d36161.png


 

识别黑白图中的服装图案(Fashion-MNIST)


https://blog.csdn.net/qq_39237205/article/details/123379997

基于上述代码修改模型的组成


1 修改myConNet模型


1.1.1 修改阐述


将模型中的两个全连接层,变为全局平均池化层。


1.1.2 修改结果


### 1.5 定义模型类
class myConNet(torch.nn.Module):
    def __init__(self):
        super(myConNet, self).__init__()
        # 定义卷积层
        self.conv1 = torch.nn.Conv2d(in_channels = 1 ,out_channels = 6,kernel_size = 3)
        self.conv2 = torch.nn.Conv2d(in_channels = 6,out_channels = 12,kernel_size = 3)
        self.conv3 = torch.nn.Conv2d(in_channels = 12, out_channels=10, kernel_size = 3) # 分为10个类
    def forward(self,t):
        # 第一层卷积和池化处理
        t = self.conv1(t)
        t = F.relu(t)
        t = F.max_pool2d(t, kernel_size=2, stride=2)
        # 第二层卷积和池化处理
        t = self.conv2(t)
        t = F.relu(t)
        t = F.max_pool2d(t, kernel_size=2, stride=2)
        # 第三层卷积和池化处理
        t = self.conv3(t)
        t = F.avg_pool2d(t,kernel_size = t.shape[-2:],stride = t.shape[-2:]) # 设置池化区域为输入数据的大小(最后两个维度),完成全局平均化的处理。
        return t.reshape(t.shape[:2])


2 代码


import  torchvision
import torchvision.transforms as transforms
import pylab
import torch
from matplotlib import pyplot as plt
import torch.utils.data
import torch.nn.functional as F
import numpy as np
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
# 定义显示图像的函数
def imshow(img):
    print("图片形状",np.shape(img))
    img = img/2 +0.5
    npimg = img.numpy()
    plt.axis('off')
    plt.imshow(np.transpose(npimg,(1,2,0)))
### 1.1 自动下载FashionMNIST数据集
data_dir = './fashion_mnist' # 设置存放位置
transform = transforms.Compose([transforms.ToTensor()]) # 可以自动将图片转化为Pytorch支持的形状[通道,高,宽],同时也将图片的数值归一化
train_dataset = torchvision.datasets.FashionMNIST(data_dir,train=True,transform=transform,download=True)
print("训练集的条数",len(train_dataset))
### 1.2 读取及显示FashionMNIST数据集中的数据
val_dataset = torchvision.datasets.FashionMNIST(root=data_dir,train=False,transform=transform)
print("测试集的条数",len(val_dataset))
##1.2.1 显示数据集中的数据
im = train_dataset[0][0].numpy()
im = im.reshape(-1,28)
pylab.imshow(im)
pylab.show()
print("当前图片的标签为",train_dataset[0][1])
### 1.3 按批次封装FashionMNIST数据集
batch_size = 10 #设置批次大小
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
### 1.4 读取批次数据集
## 定义类别名称
classes = ('T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle_Boot')
sample = iter(train_loader) # 将数据集转化成迭代器
images,labels = sample.next() # 从迭代器中取得一批数据
print("样本形状",np.shape(images)) # 打印样本形状
# 输出 样本形状 torch.Size([10, 1, 28, 28])
print("样本标签",labels)
# 输出 图片形状 torch.Size([3, 32, 302])
imshow(torchvision.utils.make_grid(images,nrow = batch_size)) # 数据可视化:make_grid()将该批次的图片内容组合为一个图片,用于显示,nrow用于设置生成图片中每行的样本数量
print(','.join('%5s' % classes[labels[j]] for j in range(len(images))))
# 输出 Trouser,Trouser,Dress,  Bag,Shirt,Sandal,Shirt,Dress,  Bag,  Bag
### 1.5 定义模型类
class myConNet(torch.nn.Module):
    def __init__(self):
        super(myConNet, self).__init__()
        # 定义卷积层
        self.conv1 = torch.nn.Conv2d(in_channels = 1 ,out_channels = 6,kernel_size = 3)
        self.conv2 = torch.nn.Conv2d(in_channels = 6,out_channels = 12,kernel_size = 3)
        self.conv3 = torch.nn.Conv2d(in_channels = 12, out_channels=10, kernel_size = 3) # 分为10个类
    def forward(self,t):
        # 第一层卷积和池化处理
        t = self.conv1(t)
        t = F.relu(t)
        t = F.max_pool2d(t, kernel_size=2, stride=2)
        # 第二层卷积和池化处理
        t = self.conv2(t)
        t = F.relu(t)
        t = F.max_pool2d(t, kernel_size=2, stride=2)
        # 第三层卷积和池化处理
        t = self.conv3(t)
        t = F.avg_pool2d(t,kernel_size = t.shape[-2:],stride = t.shape[-2:]) # 设置池化区域为输入数据的大小(最后两个维度),完成全局平均化的处理。
        return t.reshape(t.shape[:2])
if __name__ == '__main__':
    network = myConNet() # 生成自定义模块的实例化对象
    #指定设备
    device = torch.device("cuda:0"if torch.cuda.is_available() else "cpu")
    print(device)
    network.to(device)
    print(network) # 打印myConNet网络
### 1.6 损失函数与优化器
    criterion = torch.nn.CrossEntropyLoss()  #实例化损失函数类
    optimizer = torch.optim.Adam(network.parameters(), lr=.01)
### 1.7 训练模型
    for epoch in range(2):  # 数据集迭代2次
        running_loss = 0.0
        for i, data in enumerate(train_loader, 0):  # 循环取出批次数据 使用enumerate()函数对循环计数,第二个参数为0,表示从0开始
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)  #
            optimizer.zero_grad()  # 清空之前的梯度
            outputs = network(inputs)
            loss = criterion(outputs, labels)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            running_loss += loss.item()
            ### 训练过程的显示
            if i % 1000 == 999:
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0
    print('Finished Training')
### 1.8 保存模型
    torch.save(network.state_dict(),'./models/CNNFashionMNist.PTH')
### 1.9 加载模型,并且使用该模型进行预测
    network.load_state_dict(torch.load('./models/CNNFashionMNist.PTH')) # 加载模型
    # 使用模型
    dataiter = iter(test_loader) # 获取测试数据
    images, labels = dataiter.next()
    inputs, labels = images.to(device), labels.to(device)
    imshow(torchvision.utils.make_grid(images, nrow=batch_size)) # 取出一批数据进行展示
    print('真实标签: ', ' '.join('%5s' % classes[labels[j]] for j in range(len(images))))
    # 输出:真实标签:  Ankle_Boot Pullover Trouser Trouser Shirt Trouser  Coat Shirt Sandal Sneaker
    outputs = network(inputs) # 调用network对输入样本进行预测,得到测试结果outputs
    _, predicted = torch.max(outputs, 1) # 对于预测结果outputs沿着第1维度找出最大值及其索引值,该索引值即为预测的分类结果
    print('预测结果: ', ' '.join('%5s' % classes[predicted[j]] for j in range(len(images))))
    # 输出:预测结果:  Ankle_Boot Pullover Trouser Trouser Pullover Trouser Shirt Shirt Sandal Sneaker
### 1.10 评估模型
    # 测试模型
    class_correct = list(0. for i in range(10)) # 定义列表,收集每个类的正确个数
    class_total = list(0. for i in range(10)) # 定义列表,收集每个类的总个数
    with torch.no_grad():
        for data in test_loader: # 遍历测试数据集
            images, labels = data
            inputs, labels = images.to(device), labels.to(device)
            outputs = network(inputs) # 将每个批次的数据输入模型
            _, predicted = torch.max(outputs, 1) # 计算预测结果
            predicted = predicted.to(device)
            c = (predicted == labels).squeeze() # 统计正确的个数
            for i in range(10): # 遍历所有类别
                label = labels[i]
                class_correct[label] = class_correct[label] + c[i].item() # 若该类别正确则+1
                class_total[label] = class_total[label] + 1 # 根据标签中的类别,计算类的总数
    sumacc = 0
    for i in range(10): # 输出每个类的预测结果
        Accuracy = 100 * class_correct[i] / class_total[i]
        print('Accuracy of %5s : %2d %%' % (classes[i], Accuracy))
        sumacc = sumacc + Accuracy
    print('Accuracy of all : %2d %%' % (sumacc / 10.)) # 输出最终的准确率


输出:
Accuracy of T-shirt : 72 %
Accuracy of Trouser : 96 %
Accuracy of Pullover : 75 %
Accuracy of Dress : 72 %
Accuracy of  Coat : 75 %
Accuracy of Sandal : 90 %
Accuracy of Shirt : 35 %
Accuracy of Sneaker : 93 %
Accuracy of   Bag : 92 %
Accuracy of Ankle_Boot : 92 %
Accuracy of all : 79 %


目录
相关文章
|
4月前
|
安全 算法 网络安全
网络安全与信息安全:构建数字世界的坚固防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系社会秩序、保障个人隐私和企业机密的关键防线。本文旨在深入探讨网络安全漏洞的本质、加密技术的前沿进展以及提升公众安全意识的重要性,通过一系列生动的案例和实用的建议,为读者揭示如何在日益复杂的网络环境中保护自己的数字资产。
本文聚焦于网络安全与信息安全领域的核心议题,包括网络安全漏洞的识别与防御、加密技术的应用与发展,以及公众安全意识的培养策略。通过分析近年来典型的网络安全事件,文章揭示了漏洞产生的深层原因,阐述了加密技术如何作为守护数据安全的利器,并强调了提高全社会网络安全素养的紧迫性。旨在为读者提供一套全面而实用的网络安全知识体系,助力构建更加安全的数字生活环境。
|
17天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
1月前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
108 7
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
4月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
3月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
4月前
|
机器学习/深度学习 数据挖掘 TensorFlow
解锁Python数据分析新技能,TensorFlow&PyTorch双引擎驱动深度学习实战盛宴
在数据驱动时代,Python凭借简洁的语法和强大的库支持,成为数据分析与机器学习的首选语言。Pandas和NumPy是Python数据分析的基础,前者提供高效的数据处理工具,后者则支持科学计算。TensorFlow与PyTorch作为深度学习领域的两大框架,助力数据科学家构建复杂神经网络,挖掘数据深层价值。通过Python打下的坚实基础,结合TensorFlow和PyTorch的强大功能,我们能在数据科学领域探索无限可能,解决复杂问题并推动科研进步。
75 0
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。

热门文章

最新文章