时序预测 | Matlab实现SSA-BiLSTM、BiLSTM麻雀算法优化双向长短期记忆神经网络时间序列预测(含优化前后对比)

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 时序预测 | Matlab实现SSA-BiLSTM、BiLSTM麻雀算法优化双向长短期记忆神经网络时间序列预测(含优化前后对比)

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

为了进一步完善电力市场化的构建以提高电网公司的市场竞争力,短期电力负荷预测对电网的规划以及检修都具有关键的作用。所以要求对短期电力负荷预测进行更深入的研究与探索。对样本数据进行相应的分析处理,对于异常数据进行修正。进行负荷预测还要将不同影响因素的量纲考虑在其中,量纲的不同对最后的预测结果也存在一定的影响,故对样本数据进行归一化处理,以消除不同量纲对短期电力负荷预测结果的影响。当进行负荷预测时,长短期记忆(LSTM)神经网络模型存在的不足是:关键参数主要是依靠研究人员的经验选取的。为了解决此问题,引入麻雀搜索算法(Sparrow Search Algorithm,SSA)对其关键参数进行寻优,找到最优的模型参数。为提高预测精度,本文提出了SSA-CNN-LSTM模型,对CNN-LSTM模型的参数进行优化,从而得到该模型中较好的一组参数,,结果表明SSA-CNN-LSTM模型具有更高的预测精度。

⛄ 部分代码

%_________________________________________________________________________________

%  Salp Swarm Algorithm (SSA) source codes version 1.0


%

%   Main paper:

%   S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili,

%   Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems

%   Advances in Engineering Software

%   DOI: http://dx.doi.org/10.1016/j.advengsoft.2017.07.002

%____________________________________________________________________________________


function [FoodFitness,FoodPosition,Convergence_curve]=SSA(N,Max_iter,lb,ub,dim,fobj)

if size(ub,1)==1

   ub=ones(dim,1)*ub;

   lb=ones(dim,1)*lb;

end

Convergence_curve = zeros(1,Max_iter);

%Initialize the positions of salps

SalpPositions=initialization(N,dim,ub,lb);

FoodPosition=zeros(1,dim);

FoodFitness=inf;

%calculate the fitness of initial salps

for i=1:size(SalpPositions,1)

   SalpFitness(1,i)=fobj(SalpPositions(i,:));

end

[sorted_salps_fitness,sorted_indexes]=sort(SalpFitness);

for newindex=1:N

   Sorted_salps(newindex,:)=SalpPositions(sorted_indexes(newindex),:);

end

FoodPosition=Sorted_salps(1,:);

FoodFitness=sorted_salps_fitness(1);

%Main loop

l=2; % start from the second iteration since the first iteration was dedicated to calculating the fitness of salps

while l<Max_iter+1

   c1 = 2*exp(-(4*l/Max_iter)^2); % Eq. (3.2) in the paper

   for i=1:size(SalpPositions,1)

       SalpPositions= SalpPositions';

       if i<=N/2

           for j=1:1:dim

               c2=rand();

               c3=rand();

               %%%%%%%%%%%%% % Eq. (3.1) in the paper %%%%%%%%%%%%%%

               if c3<0.5

                   SalpPositions(j,i)=FoodPosition(j)+c1*((ub(j)-lb(j))*c2+lb(j));

               else

                   SalpPositions(j,i)=FoodPosition(j)-c1*((ub(j)-lb(j))*c2+lb(j));

               end

               %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

           end

       elseif i>N/2 && i<N+1

           point1=SalpPositions(:,i-1);

           point2=SalpPositions(:,i);

           SalpPositions(:,i)=(point2+point1)/2; % % Eq. (3.4) in the paper

       end

       SalpPositions= SalpPositions';

   end

   for i=1:size(SalpPositions,1)

       Tp=SalpPositions(i,:)>ub';Tm=SalpPositions(i,:)<lb';SalpPositions(i,:)=(SalpPositions(i,:).*(~(Tp+Tm)))+ub'.*Tp+lb'.*Tm;

       SalpFitness(1,i)=fobj(SalpPositions(i,:));

       if SalpFitness(1,i)<FoodFitness

           FoodPosition=SalpPositions(i,:);

           FoodFitness=SalpFitness(1,i);

       end

   end

   Convergence_curve(l)=FoodFitness;

   l = l + 1;

end

⛄ 运行结果

⛄ 参考文献

[1]徐先峰, 黄刘洋, 龚美. 基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测[J]. 工业仪表与自动化装置, 2020.

[2]姜南林. 基于改进麻雀搜索算法优化长短期记忆网络的短期电力负荷预测研究.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
13天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
3月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
193 19
|
3月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
109 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)