卷积神经网络分类算法的模型训练

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 卷积神经网络分类算法的模型训练

卷积神经网络分类算法的模型训练

启动Web服务器、应用使用说明和测试结果示例。

模型创建与编译

原VGG-16模型要求输入224×224×3的图片,限于GPU的计算能力,选择将28×28×1的数据集图片大小重置为56×56×1,由此计算出进入第一个全连接层的图像尺寸为7×7×256;最后一个全连接层输出值设为类别数量10。按设计好的参数定义模型结构,代码如下:

e1ac6b9397694c9f9cedabea1d4ce07f.png

为了评估实际情况和预测情况的差距,引入相对熵来描述这一差距。本模型是多类别的分类问题,因此选用经典的交叉熵作为损失函数,代码如下:

#损失函数

loss=nn.CrossEntropyLoss()

为了进行参数的调整和更新,以达到损失函数的最小化或最大化,使模型产生更好更快的效果,需要选择训练策略。本模型选择Adam优化算法,它具有能计算每个参数的自适应学习率的特点。因此,可以设置学习率为默认值0.001。

#优化算法

optimizer=optim.Adam(net.parameters(),lr=0.001)

模型训练及保存

定义模型结构及损失函数后,需要对模型进行训练,使其具有服装图像分类的能力。经过训练的模型需要测试,以评估模型的训练效果。根据训练和测试的效果进行参数的调整后,保存模型。设定训练集batch_size=50,则每训练50张图片后进行一次迭代,根据损失函数前向传播,完成参数更新。

229b27558ee444a3a13ccf7eb67409de.png

为使训练效果更加直观,可以借助画图工具对训练过程可视化,模型将在每一个训练周期结束后保存损失值和准确度。

模型保存

在模型训练过程中,同时保存模型当前已训练周期数、权重、损失函数、优化算法,便于在训练终止后从当前进度恢复训练,并同时保存每个周期的损失值和正确率,以方便数据可视化。

模型生成

该应用分两部分:一是网页端交互功能,用户可以上传需要分类的图片并查看分类结果;二是图片预处理,将图片转换为PyTorch能够处理的格式并输入模型中,获取图片分类结果。

获得用户上传的图片并输入至模型获得对应的分类,将标签和图片写入数据库中。为了提高数据库的稳定性,采用bulk_create()方法批量写入数据,避免每写入一条数据就需要调用和关闭数据库的烦琐操作。

3e40cd851fa548edafa8432038956911.png

图像预处理

使用PIL库作为打开图片的方式,类型为Image,并将图片转为灰度图像。

3fe41078992e425cb9490bcb61d266d2.png

为使图片符合输入模型的数据格式,对图像进行预处理。模型输入图像大小要求为56×56,因此,修改用户输入的图像分辨率为56×56;为了对图像进行数据化处理,将PIL Image对象转换为numpy类型;原始数据集图片为黑底色白图案,将输入图片进行黑白色反转;PyTorch要求的数据输入格式为[b,c,h,w],需要扩展numpy的维数,再转换成Tensor张量。


模型调用与导入

首先,进行实例化;其次,使用load()方法加载模型的权重;最后,使用load_state_dict()方法将参数加载到网络上。

8e7f13339337429b8b7113929d927f85.png

目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
3天前
|
机器学习/深度学习 数据采集 运维
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
35 18
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9天前
|
机器学习/深度学习
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
39 11
|
9天前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
32 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
9天前
|
机器学习/深度学习 存储
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
30 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
|
9天前
|
机器学习/深度学习 编解码 移动开发
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
28 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
86 17

热门文章

最新文章

相关产品

  • 人工智能平台 PAI