基于深度学习的鸟类检测识别系统(含UI界面,Python代码)

简介: 基于深度学习的鸟类检测识别系统(含UI界面,Python代码)

前言


       作为一个地区生物多样性与生态环境的重要指标,“鸟类数量及分布”越来越受到自然保护区、湿地公园、动物保护监管部门等机构的重视,实时监测鸟类品种、数量与分布,成为各地区的常态化工作。本文使用YOLOv5目标检测算法,可以为鸟类监测识别提供AI技术支持,提升监测识别效率,解决单纯人工监测造成的低效与误差,为鸟类保护养育提供更好的数据支撑。

       鸟类监测识别具有较高复杂性,鸟类飞行路线不定、落点不定、时间不定,监测区域多样(森林、湿地、湖泊、草地等),部分鸟类习性、形体、颜色具有极高相似度,这些因素使得对鸟类监测识别技术的要求极高。传统的机器视觉算法难以实现准确快速识别鸟类的品种和位置,近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,其论文可参考TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios,开源的代码可见https://github.com/ultralytics/yolov5(官方源码仓库)。

       自动化的鸟类识别能够帮助人们更方便地了解地理区域内特定鸟类的数量和活动情况,目前网上鸟类检测和识别的应用较少,能够参考的例子不多,几乎没有人将其开发成一个可以展示的完整软件,并不方便选择图片、视频文件和实时检测。对此这里博主利用加州理工学院鸟类数据集(The Caltech-UCSD Birds-200-2011 Dataset)训练YOLOv5模型,并给出自行设计的UI界面,保持博主同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,切换模型、保存结果等,希望大家可以喜欢,初始界面如下图:



       检测鸟的种类时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个鸟的类别,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       鸟类检测识别系统主要用于野外或日常生活场景中鸟类图像的识别,显示鸟类目标在图像中的类别、位置、数目、置信度等;可对图片、视频文件读取的图像,或从摄像头获取的实时画面中的鸟类进行识别,算法模型可选择替换;系统界面包含用户注册、登录功能,方便用户进行管理和使用;识别结果可视化,结果实时显示并能够进行目标逐个标注、显示和数据展示;画面显示窗口可缩放、拖动、自适应,结果可点击按钮保存,方便后续查阅使用。


       软件好不好用,颜值很重要,首先我们还是通过动图看一下鸟类识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的鸟类进行识别,检测的结果可视化显示在界面和图像中,提供模型切换、单个目标选中等功能,其演示效果如下。


(一)用户注册登录界面

       这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个动图,右侧输入账号、密码、验证码等等。



(二)选择鸟类图片识别


       系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有鸟类识别的结果,可通过下拉选框查看单个鸟类的结果。本功能的界面展示如下图所示:



(三)视频识别效果展示


       很多时候我们需要识别一段视频中的鸟的种类,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别鸟类,并将结果标记在画面中,效果如下图所示:



(四)摄像头检测效果展示


       在真实场景中,我们往往利用设备摄像头获取实时画面,同时需要对画面中的鸟类进行识别,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的鸟,识别结果展示如下图:



(五)切换鸟类检测模型


       可选择训练得到的检测模型,利用调优后的模型进行检测,对于YOLOv5的预训练模型通用适用。这里可以自由切换不同的模型,以比较不同的检测效果。




2. 鸟类数据集及训练


       这里我们使用的鸟类识别数据集,是加州理工学院鸟类数据集(The Caltech-UCSD Birds-200-2011 Dataset),CUB 数据集一共 200 个类别,共 11788 张图片,每张图片除包括类别标签外,还有一个标注的物体边框(Bounding Box)、关键点和一些其他属性,属于具有较高细粒度的鸟类图像数据集。



       CUB数据集中每个物种都与Wikipedia文章相关联,并按科学分类(顺序、科、属、物种)进行组织,包含200类鸟类子类,其中训练数据集有5994张图像,测试集有5794张图像。每张图像均提供了图像类标记信息,图像中鸟的bounding box,鸟的关键part信息,以及鸟类的属性信息,下载CUB数据并解压后得到如下的文件夹



       由于CUB数据集的标注文件和YOLO的格式不一致,这里我们选取CUB数据集中的类别,转换为YOLO格式。标签格式转换的代码可参考博客:CUB_200_2011数据集转Yolo格式,最终我们得到YOLO格式的数据集文件,并进行模型训练。


       在训练模型之前,为了让我们的数据能够被YOLO找到,我们需要写一个data.yaml文件存储在案例目录下,在其中记录下数据的路径和模型要识别的标记类别,文件内容如下所示。YOLO通过读取目录下的data.yaml文件,进而找到我们数据集存储的位置才能读取数据进行训练验证。

python
train: F:\BlogCode\BirdDet\Bird\train.txt # 训练集
val: F:\BlogCode\BirdDet\Bird\test.txt    # 验证集
nc: 36   # 训练的类别
names: ['Acadian_Flycatcher','American_Crow','American_Goldfinch','American_Pipit',
'American_Redstart','American_Three_toed_Woodpecker','Anna_Hummingbird','Artic_Tern','Baird_Sparrow','Baltimore_Oriole',
'Bank_Swallow','Barn_Swallow','Bay_breasted_Warbler','Belted_Kingfisher',
'Bewick_Wren','Black_Tern','Black_and_white_Warbler','Black_billed_Cuckoo','Black_capped_Vireo','Black_footed_Albatross','Black_throated_Blue_Warbler',
'Black_throated_Sparrow','Blue_Grosbeak','Blue_Jay','Blue_headed_Vireo','Blue_winged_Warbler','Boat_tailed_Grackle',
'Bobolink','Bohemian_Waxwing','Brandt_Cormorant','Brewer_Blackbird','Brewer_Sparrow','Bronzed_Cowbird',
'Brown_Creeper','Brown_Pelican','Brown_Thrasher']


       训练模型通过调用模型文件夹下的train.py进行,可以通过--batch参数和--epochs参数调整训练批次大小和训练轮数。YOLOv5提供了在COCO数据集上预训练后的参数,我们可以通过参数--weights yolov5s.pt加载预训练参数进行迁移学习,或在训练大数据集(比如COCO)时用一个空的--weights ''参数从零开始训练。然后设定各种参数,代码如下:

python
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='./weights/best.pt',
                    help='model.pt path(s)')  # 模型路径仅支持.pt文件
parser.add_argument('--img-size', type=int, default=480, help='inference size (pixels)')  # 检测图像大小,仅支持480
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')  # 置信度阈值
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')  # NMS阈值
# 选中运行机器的GPU或者cpu,有GPU则GPU,没有则cpu,若想仅使用cpu,可以填cpu即可
parser.add_argument('--device', default='',
                    help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--save-dir', type=str, default='inference', help='directory to save results')  # 文件保存路径
parser.add_argument('--classes', nargs='+', type=int,
                    help='filter by class: --class 0, or --class 0 2 3')  # 分开类别
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')  # 使用NMS
opt = parser.parse_args()  # opt局部变量,重要
out, weight, imgsz = opt.save_dir, opt.weights, opt.img_size  # 得到文件保存路径,文件权重路径,图像尺寸
device = select_device(opt.device)  # 检验计算单元,gpu还是cpu
half = device.type != 'cpu'  # 如果使用gpu则进行半精度推理
model = attempt_load(weight, map_location=device)  # 读取模型
        我们可以在终端输入如下命令进行训练,当然也可以直接点击train.py运行。
python
python train.py --batch 32 --epochs 300 --data data.yaml --weights yolov5s.pt --hyp data/hyps/hyp.scratch-med.yaml --cache


       在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练鸟类识别的模型训练曲线图。



       在我们的训练过程中,mAP50作为一种常用的目标检测评估指标很快达到了较高水平,而mAP50:95也在训练的过程中不断提升,说明我们模型从训练-验证的角度表现良好。读入一个测试文件夹进行预测,通过训练得到的选取验证集上效果最好的权重best.pt进行实验,得到PR曲线如下图所示。



3. 鸟类检测识别


       在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,预测方法(predict.py)部分的代码如下所示:

python
def predict(img):
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    t1 = time_synchronized()
    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                               agnostic=opt.agnostic_nms)
    t2 = time_synchronized()
    InferNms = round((t2 - t1), 2)
    return pred, InferNms


       得到预测结果我们便可以将帧图像中的鸟类框出,然后在图片上用opencv绘图操作,输出鸟的类别及鸟的预测分数。以下是读取一个鸟类图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

python
if __name__ == '__main__':
    img_path = "./UI_rec/test_/Bobolink_0079_10736.jpg"
    image = cv_imread(img_path)
    img0 = image.copy()
    img = letterbox(img0, new_shape=imgsz)[0]
    img = np.stack(img, 0)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)
    pred, useTime = predict(img)
    det = pred[0]
    p, s, im0 = None, '', img0
    if det is not None and len(det):  # 如果有检测信息则进入
        det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
        number_i = 0  # 类别预编号
        detInfo = []
        for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
            c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
            # 将检测信息添加到字典中
            detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
            number_i += 1  # 编号数+1
            label = '%s %.2f' % (names[int(cls)], conf)
            # 画出检测到的目标物
            plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
    # 实时显示检测画面
    cv2.imshow('Stream', image)
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    #     break
    c = cv2.waitKey(0) & 0xff


       执行得到的结果如下图所示,图中鸟类的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。



       博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
相关文章
|
2天前
|
人工智能 Python
【Python实用技能】建议收藏:自动化实现网页内容转PDF并保存的方法探索(含代码,亲测可用)
【Python实用技能】建议收藏:自动化实现网页内容转PDF并保存的方法探索(含代码,亲测可用)
20 0
|
2天前
|
人工智能 Python
【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
6 0
|
2天前
|
Linux 网络安全 开发工具
【超详细!超多图!】【代码管理】Python微信公众号开发(3)- 服务器代码上传Github
【超详细!超多图!】【代码管理】Python微信公众号开发(3)- 服务器代码上传Github
10 0
|
3天前
|
数据安全/隐私保护 Python
Python中的装饰器:提升代码可读性和灵活性
Python中的装饰器是一种强大的编程工具,能够提升代码的可读性和灵活性。本文将深入探讨装饰器的原理和用法,以及如何利用装饰器来简化代码、实现日志记录、权限控制等功能,从而让你的Python代码更加优雅和高效。
|
2天前
|
机器学习/深度学习 存储 边缘计算
深度学习在图像识别中的应用与挑战
【4月更文挑战第23天】 随着人工智能技术的飞速发展,深度学习作为其重要分支之一,在图像识别领域取得了显著的成果。本文将探讨深度学习在图像识别中的应用,分析其优势和面临的挑战,并展望未来的发展趋势。
|
2天前
|
机器学习/深度学习 安全 计算机视觉
深度学习在图像识别中的应用与挑战
【4月更文挑战第24天】 随着计算机视觉技术的飞速发展,深度学习已成为推动图像识别领域进步的核心动力。本文旨在探讨深度学习技术在图像识别中的关键应用,并分析当前面临的主要挑战。通过回顾卷积神经网络(CNN)的基础架构及其在图像分类、目标检测和语义分割中的创新应用,文章揭示了深度学习模型如何优化视觉信息处理流程。同时,针对训练数据需求、计算资源限制、模型泛化能力及对抗性攻击等问题,本文提出了一系列解决策略和技术方向,为未来研究提供了参考框架。
5 0
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第24天】 随着人工智能技术的飞速发展,深度学习在图像处理领域取得了显著成果,特别是在自动驾驶系统中的应用。本文首先介绍了深度学习的基本概念和关键技术,然后详细阐述了卷积神经网络(CNN)在图像识别中的优势和应用,最后探讨了深度学习在自动驾驶系统中的挑战和未来发展趋势。
|
2天前
|
机器学习/深度学习 数据采集 自动驾驶
深度学习在图像识别中的应用与挑战
【4月更文挑战第24天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域进步的核心动力。本文旨在探讨深度学习在图像识别任务中的关键技术、应用实例以及面临的主要挑战。我们将从卷积神经网络(CNN)的基本原理出发,剖析其在图像分类、目标检测和语义分割等方面的具体应用,并讨论数据增强、模型泛化及对抗性攻击等现实问题对深度学习模型性能的影响。通过综合分析和案例研究,本文为读者提供了一个关于深度学习在图像识别领域应用现状和未来趋势的全面视角。
|
2天前
|
机器学习/深度学习 算法 自动驾驶
深度学习在图像识别中的应用与挑战
【4月更文挑战第24天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉进步的重要力量。本文将深入探讨深度学习技术在图像识别领域的应用现状,分析其面临的主要挑战,并提出未来可能的发展方向。我们将从卷积神经网络(CNN)的基础结构出发,逐步剖析其在图像分类、目标检测及语义分割等任务中的实际应用,并讨论数据增强、迁移学习等优化策略。此外,文章还将针对计算资源需求高、模型泛化能力以及对抗性攻击等问题进行详细论述。
|
2天前
|
机器学习/深度学习 边缘计算 监控
深度学习赋能智能监控:图像识别技术的革新与应用
【4月更文挑战第23天】 随着人工智能的迅猛发展,深度学习技术在图像处理领域取得突破性进展,特别是在智能监控系统中,基于深度学习的图像识别已成为提升系统智能化水平的核心动力。本文旨在探讨深度学习如何优化智能监控系统中的图像识别过程,提高监控效率和准确性,并分析其在不同应用场景下的具体实施策略。通过深入剖析关键技术、挑战及解决方案,本文为读者提供了一个关于深度学习图像识别技术在智能监控领域应用的全面视角。