MySQL到ClickHouse数据同步方案对比

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: ClickHouse在执行分析查询时的速度优势很好的弥补了MySQL的不足,但是对于很多开发者和DBA来说,如何将MySQL稳定、高效、简单的同步到ClickHouse却很困难。本文对比了NineData、MaterializeMySQL(ClickHouse自带)、Bifrost三款产品,看看他们在同步时的差异。

ClickHouse 在执行分析查询时的速度优势很好的弥补了 MySQL 的不足,但是对于很多开发者和DBA来说,如何将MySQL稳定、高效、简单的同步到 ClickHouse 却很困难。本文对比了 NineData、MaterializeMySQL(ClickHouse自带)、Bifrost 三款产品,看看他们在同步时的差异。

对比结果概述

整体上,NineData(官网:www.ninedata.cloud )的数据复制功能在功能、性能表现最突出。其次是Bifrost和ClickHouse自带的MaterializeMySQL。NineData在增量DDL的处理、字段映射的准确性、无主键表、以及功能丰富度上最强(数据校验、过滤、限流等),详细的对比如下图:

image.png

MySQL到ClickHouse数据同步产品对比结果概述

结构映射对比

在做了详细对比之后,对于基础类型,只有NineData考虑的更加完整,例如MySQL的datetime需要映射到ClickHouse的DateTime64,否则则可能出现数据丢失。如果使用Biforst或MaterializeMySQL等其他产品均映射到datetime可能会造成一定程度的数据精度丢失。

此外,在对比了MySQL全部数据类型之后,发现NineData支持更完整,例如对JSON类型、几何数据、地理信息仅NineData支持。此外,对于基础类型,也只有NineData考虑更加细致,使用Biforst或MaterializeMySQL等其他产品则可能导致精度丢失,从而造成数据丢失。

详细的对比如下图:

image.png

结构映射对比

无主键表支持

NineData对记录做了特殊的标记处理,所以很好的支持了无主键表的数据同步。而MaterializeMySQL、Biforst均不支持。

详细的对比如下图:

image.png

无主键表支持情况

增量DDL

对于数据增量同步,支持好各种类型的DDL是保障同步链路持续稳定的关键,NineData在无主键表DDL支持、字段删除、字段名修改等特殊操作均做了适配处理,可以很好的保障复制链路的问题。同时,NineData还提供了可视化的错误修复和跳过功能,可以最大限度的保障链路持续稳定。

详细的对比如下图:

image.png

增量DDL对比结果

限流、对比、过滤等

除了前面介绍的一般功能之外,为了提升数据质量、保障稳定,NineData还支持了包括数据对比、运行中的限流、数据过滤等功能。具体的说明如下:

image.png

增量DDL 限流、对比、过滤等对比结果

同步性能对比

这里使用 sysbench工具生成了5000万行记录进行全量性能对比,再生成约1800万次DML(约5GB Binlog)进行增量性能对比。

对比中,全量同步 NineData 性能为36.2W RPS(每秒同步记录数)为最高;增量同步则是 ClickHouse 自带的同步工具 MaterializeMySQL 最高,需要注意,MaterializeMySQL 在错误处理上比较简单,如果报错则需要全部重新同步。

详细的对比如下:

  • 全量同步

通过sysbench生成10张表,每张表500W记录(5000W行),数据文件大小约为12G:

image.png

同步性能对比

  • 增量同步

通过sysbench生成5G大小的BinLog日志(约1800W次DML),再进行增量同步:

image.png

增量同步

总结

NineDatahttps://www.ninedata.cloud/)在功能上领先其他同步工具,特别是字段类型的全面适配和增量复制期间DDL的支持度,并且在动态限流、数据对比、监控等能力上也支持的最完善。

所以,如果想把MySQL的数据实时同步到ClickHouse,推荐使用NineData,不仅使用简单(SaaS),并在满足功能和性能的前提下,实现了字段类型的无损转换和数据的实时复制,很好的解决MySQL 同步数据到ClickHouse的问题。

补充说明

当前各个云厂商虽然都提供ClickHouse托管服务,但是另一方面云厂商又都在发展自己的数仓产品,在同步功能支持上通常仅对自家的数仓产品支持比较好,而对ClickHouse同步支持都很薄弱。此外,开源工具Canal也因为不能很好的支持结构同步,使用和维护起来并不方便。

目录
相关文章
|
14天前
|
存储 SQL 关系型数据库
Mysql高可用架构方案
本文阐述了Mysql高可用架构方案,介绍了 主从模式,MHA模式,MMM模式,MGR模式 方案的实现方式,没有哪个方案是完美的,开发人员在选择何种方案应用到项目中也没有标准答案,合适的才是最好的。
75 3
Mysql高可用架构方案
|
1月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
1月前
|
监控 关系型数据库 MySQL
深入了解MySQL主从复制:构建高效稳定的数据同步架构
深入了解MySQL主从复制:构建高效稳定的数据同步架构
120 1
|
1月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
45 0
|
15天前
|
关系型数据库 MySQL
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
41 5
|
20天前
|
关系型数据库 MySQL
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
28 1
|
2月前
|
存储 SQL 关系型数据库
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
MySQL如何进行分库分表、数据迁移?从相关概念、使用场景、拆分方式、分表字段选择、数据一致性校验等角度阐述MySQL数据库的分库分表方案。
403 15
一篇文章搞懂MySQL的分库分表,从拆分场景、目标评估、拆分方案、不停机迁移、一致性补偿等方面详细阐述MySQL数据库的分库分表方案
|
1月前
|
消息中间件 NoSQL 关系型数据库
一文彻底搞定Redis与MySQL的数据同步
【10月更文挑战第21天】本文介绍了 Redis 与 MySQL 数据同步的原因及实现方式。同步的主要目的是为了优化性能和保持数据一致性。实现方式包括基于数据库触发器、应用层双写和使用消息队列。每种方式都有其优缺点,需根据具体场景选择合适的方法。此外,文章还强调了数据同步时需要注意的数据一致性、性能优化和异常处理等问题。
350 0
|
1月前
|
SQL 关系型数据库 MySQL
mysql集群方案
mysql集群方案
41 0
|
1月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景

热门文章

最新文章