ClickHouse如何整合数据源:MySQL、HDFS...

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: ClickHouse 是一个强大的列式数据库管理系统,支持多种数据源。常见的数据源包括外部数据源(如 HDFS、File、URL、Kafka 和 RabbitMQ)、数据库(如 MySQL 和 PostgreSQL)和流式数据(如 Stream 和 Materialized Views)。本文介绍了如何从 MySQL 和 HDFS 读取数据到 ClickHouse 中,包括创建数据库、映射表和查询数据的具体步骤。通过这些方法,用户可以方便地将不同来源的数据导入 ClickHouse 进行高效存储和分析。

一、ClickHouse数据源


添加图片注释,不超过 140 字(可选)


ClickHouse 作为一个强大的列式数据库管理系统,支持多种数据源,使得用户能够方便地将数据导入 ClickHouse 进行存储和分析。以下是常见的 ClickHouse 数据源:

外部数据源

  1. HDFS: 支持从 Hadoop 分布式文件系统 (HDFS) 读取数据,适合大数据处理场景。
  2. File: 支持从本地文件系统中读取数据,常见的格式包括 CSV、TSV、JSON、Parquet 和 ORC 等。
  3. URL: 允许从 HTTP/HTTPS URL 读取数据,可以用于从 Web 服务或远程文件读取数据。
  4. Kafka: 支持从 Apache Kafka 消息队列读取数据,适用于实时数据流处理和分析。
  5. RabbitMQ: 支持从 RabbitMQ 消息队列读取数据,类似于 Kafka 的数据流处理。

数据库

  1. MySQL: 支持通过 MySQL 表引擎从 MySQL 数据库读取数据,可以实现 ClickHouse 和 MySQL 之间的数据集成。
  2. PostgreSQL: 通过 PostgreSQL 表引擎,可以从 PostgreSQL 数据库中读取数据,实现跨数据库查询。

流式数据

  1. Stream: 支持通过流式数据源进行实时数据处理,适合需要低延迟的数据分析和监控。
  2. Materialized Views: 可以基于流式数据源创建物化视图,实现实时数据聚合和预计算。



二、ClickHouse读取MySQL

创建ClickHouse数据库

首先,我们需要在ClickHouse中创建一个数据库,用于存放从MySQL导入的数据。可以使用以下命令创建数据库:

CREATE DATABASE IF NOT EXISTS clickhouse_schedule;

这个命令会检查clickhouse_db数据库是否存在,如果不存在,则创建它。


添加图片注释,不超过 140 字(可选)


在ClickHouse中创建MySQL表的映射

接下来,我们需要在ClickHouse中创建一个MySQL表的映射。这可以通过使用ClickHouse的MySQL数据库引擎来实现。以下是创建映射的示例命令:

use clickhouse_schedule; CREATE TABLE IF NOT EXISTS  clickhouse_schedule.qrtz_job_details  (   `SCHED_NAME` varchar(120) NOT NULL,   `JOB_NAME` varchar(200) NOT NULL,   `JOB_GROUP` varchar(200) NOT NULL,   `DESCRIPTION` varchar(250) DEFAULT NULL,   `JOB_CLASS_NAME` varchar(250) NOT NULL,   `IS_DURABLE` varchar(1) NOT NULL,   `IS_NONCONCURRENT` varchar(1) NOT NULL,   `IS_UPDATE_DATA` varchar(1) NOT NULL,   `REQUESTS_RECOVERY` varchar(1) NOT NULL,   `JOB_DATA` blob ) ENGINE = MySQL('ip:port', '{数据库名称}', '{表名称}', '{username}', '{password}') AS SELECT * FROM qrtz_job_details;

在这个命令中,我们指定了MySQL服务器的地址、数据库名、表名以及访问MySQL所需的用户名和密码。clickhouse_schedule是在ClickHouse中创建的表,它将映射到MySQL中名为qrtz_job_details的表。

查询数据

导入数据后,我们可以像查询普通ClickHouse表一样查询映射表:

SELECT * FROM clickhouse_schedule.qrtz_job_details;

这个命令会返回clickhouse_table中所有记录。


添加图片注释,不超过 140 字(可选)


三、ClickHouse读取HDFS

使用CREATE TABLE语句和HDFS引擎来创建表。以下是一个示例命令,它创建了一个表,该表从HDFS上的TSV格式文件中读取数据:

CREATE TABLE hdfs_table (     column1_name column1_type,     column2_name column2_type,     ... ) ENGINE = HDFS('hdfs://hdfs_host:port/path_to_file', 'TSV')

  • hdfs_table是创建的表的名称
  • column1_namecolumn2_name是列的名称
  • column1_typecolumn2_type是列的数据类型
  • hdfs://hdfs_host:port/path_to_file是指向HDFS上文件的URI
  • TSV是文件的格式。



相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
4月前
|
关系型数据库 MySQL 定位技术
MySQL与Clickhouse数据库:探讨日期和时间的加法运算。
这一次的冒险就到这儿,期待你的再次加入,我们一起在数据库的世界中找寻下一个宝藏。
198 9
|
6月前
|
关系型数据库 MySQL 数据库
|
11月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
169 0
|
10月前
|
SQL DataWorks 关系型数据库
阿里云 DataWorks 正式支持 SelectDB & Apache Doris 数据源,实现 MySQL 整库实时同步
阿里云数据库 SelectDB 版是阿里云与飞轮科技联合基于 Apache Doris 内核打造的现代化数据仓库,支持大规模实时数据上的极速查询分析。通过实时、统一、弹性、开放的核心能力,能够为企业提供高性价比、简单易用、安全稳定、低成本的实时大数据分析支持。SelectDB 具备世界领先的实时分析能力,能够实现秒级的数据实时导入与同步,在宽表、复杂多表关联、高并发点查等不同场景下,提供超越一众国际知名的同类产品的优秀性能,多次登顶 ClickBench 全球数据库分析性能排行榜。
484 6
|
2月前
|
存储 监控 分布式数据库
ClickHouse分布式数据库动态伸缩(弹性扩缩容)的实现
实现ClickHouse数据库的动态伸缩需要持续的维护和精细的操作。从集群配置到数据迁移,再到监控和自动化,每一步都要仔细管理以确保服务的可靠性和性能。这些活动可以显著提高应用的响应性和成本效率,帮助业务根据实际需求灵活调整资源分配。
183 10
|
11月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
9月前
|
SQL Unix OLAP
ClickHouse安装教程:开启你的列式数据库之旅
ClickHouse 是一个高性能的列式数据库管理系统,适用于在线分析处理(OLAP)。本文介绍了 ClickHouse 的基本使用步骤,包括下载二进制文件、安装应用、启动服务器和客户端、创建表、插入数据以及查询新表。还提到了图形客户端 DBeaver 的使用,使操作更加直观。通过这些步骤,用户可以快速上手并利用 ClickHouse 的强大性能进行数据分析。
980 4
|
存储 SQL 缓存
数据库测试|Elasticsearch和ClickHouse的对决
由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。
数据库测试|Elasticsearch和ClickHouse的对决
|
11月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
|
11月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景

热门文章

最新文章

推荐镜像

更多