ClickHouse如何整合数据源:MySQL、HDFS...

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: ClickHouse 是一个强大的列式数据库管理系统,支持多种数据源。常见的数据源包括外部数据源(如 HDFS、File、URL、Kafka 和 RabbitMQ)、数据库(如 MySQL 和 PostgreSQL)和流式数据(如 Stream 和 Materialized Views)。本文介绍了如何从 MySQL 和 HDFS 读取数据到 ClickHouse 中,包括创建数据库、映射表和查询数据的具体步骤。通过这些方法,用户可以方便地将不同来源的数据导入 ClickHouse 进行高效存储和分析。

一、ClickHouse数据源


添加图片注释,不超过 140 字(可选)


ClickHouse 作为一个强大的列式数据库管理系统,支持多种数据源,使得用户能够方便地将数据导入 ClickHouse 进行存储和分析。以下是常见的 ClickHouse 数据源:

外部数据源

  1. HDFS: 支持从 Hadoop 分布式文件系统 (HDFS) 读取数据,适合大数据处理场景。
  2. File: 支持从本地文件系统中读取数据,常见的格式包括 CSV、TSV、JSON、Parquet 和 ORC 等。
  3. URL: 允许从 HTTP/HTTPS URL 读取数据,可以用于从 Web 服务或远程文件读取数据。
  4. Kafka: 支持从 Apache Kafka 消息队列读取数据,适用于实时数据流处理和分析。
  5. RabbitMQ: 支持从 RabbitMQ 消息队列读取数据,类似于 Kafka 的数据流处理。

数据库

  1. MySQL: 支持通过 MySQL 表引擎从 MySQL 数据库读取数据,可以实现 ClickHouse 和 MySQL 之间的数据集成。
  2. PostgreSQL: 通过 PostgreSQL 表引擎,可以从 PostgreSQL 数据库中读取数据,实现跨数据库查询。

流式数据

  1. Stream: 支持通过流式数据源进行实时数据处理,适合需要低延迟的数据分析和监控。
  2. Materialized Views: 可以基于流式数据源创建物化视图,实现实时数据聚合和预计算。



二、ClickHouse读取MySQL

创建ClickHouse数据库

首先,我们需要在ClickHouse中创建一个数据库,用于存放从MySQL导入的数据。可以使用以下命令创建数据库:

CREATE DATABASE IF NOT EXISTS clickhouse_schedule;

这个命令会检查clickhouse_db数据库是否存在,如果不存在,则创建它。


添加图片注释,不超过 140 字(可选)


在ClickHouse中创建MySQL表的映射

接下来,我们需要在ClickHouse中创建一个MySQL表的映射。这可以通过使用ClickHouse的MySQL数据库引擎来实现。以下是创建映射的示例命令:

use clickhouse_schedule; CREATE TABLE IF NOT EXISTS  clickhouse_schedule.qrtz_job_details  (   `SCHED_NAME` varchar(120) NOT NULL,   `JOB_NAME` varchar(200) NOT NULL,   `JOB_GROUP` varchar(200) NOT NULL,   `DESCRIPTION` varchar(250) DEFAULT NULL,   `JOB_CLASS_NAME` varchar(250) NOT NULL,   `IS_DURABLE` varchar(1) NOT NULL,   `IS_NONCONCURRENT` varchar(1) NOT NULL,   `IS_UPDATE_DATA` varchar(1) NOT NULL,   `REQUESTS_RECOVERY` varchar(1) NOT NULL,   `JOB_DATA` blob ) ENGINE = MySQL('ip:port', '{数据库名称}', '{表名称}', '{username}', '{password}') AS SELECT * FROM qrtz_job_details;

在这个命令中,我们指定了MySQL服务器的地址、数据库名、表名以及访问MySQL所需的用户名和密码。clickhouse_schedule是在ClickHouse中创建的表,它将映射到MySQL中名为qrtz_job_details的表。

查询数据

导入数据后,我们可以像查询普通ClickHouse表一样查询映射表:

SELECT * FROM clickhouse_schedule.qrtz_job_details;

这个命令会返回clickhouse_table中所有记录。


添加图片注释,不超过 140 字(可选)


三、ClickHouse读取HDFS

使用CREATE TABLE语句和HDFS引擎来创建表。以下是一个示例命令,它创建了一个表,该表从HDFS上的TSV格式文件中读取数据:

CREATE TABLE hdfs_table (     column1_name column1_type,     column2_name column2_type,     ... ) ENGINE = HDFS('hdfs://hdfs_host:port/path_to_file', 'TSV')

  • hdfs_table是创建的表的名称
  • column1_namecolumn2_name是列的名称
  • column1_typecolumn2_type是列的数据类型
  • hdfs://hdfs_host:port/path_to_file是指向HDFS上文件的URI
  • TSV是文件的格式。



相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
81 0
|
3月前
|
SQL DataWorks 关系型数据库
阿里云 DataWorks 正式支持 SelectDB & Apache Doris 数据源,实现 MySQL 整库实时同步
阿里云数据库 SelectDB 版是阿里云与飞轮科技联合基于 Apache Doris 内核打造的现代化数据仓库,支持大规模实时数据上的极速查询分析。通过实时、统一、弹性、开放的核心能力,能够为企业提供高性价比、简单易用、安全稳定、低成本的实时大数据分析支持。SelectDB 具备世界领先的实时分析能力,能够实现秒级的数据实时导入与同步,在宽表、复杂多表关联、高并发点查等不同场景下,提供超越一众国际知名的同类产品的优秀性能,多次登顶 ClickBench 全球数据库分析性能排行榜。
|
26天前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
13天前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
93 42
|
4天前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
47 25
|
1月前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
269 0
|
2月前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
74 3
|
2月前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
127 3
|
2月前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE 'log_%';`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
118 2
|
2月前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
385 15