大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
日志服务 SLS,月写入数据量 50GB 1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(正在更新···)

章节内容

上节我们完成了如下的内容:


MergeTree 实测案例

ReplacingMergeTree

SummingMergeTree

CollapsingMergeTree

简介

以增代删。

Yandex官方给出的介绍是CollapsingMergeTree会异步的删除(折叠)除了特定列的 Sign 有 1 和 -1 的值以外,其余所有字段的值都相等的成对的行。没有成对的行会被保留,该引擎可以显著的降低存储量并提高SELECT查询效率。

CollapsingMergeTree引擎有个状态列Sign,这个值为1为“状态”行,-1为“取消”行,对于数据只关心状态列为状态的数据,不关心状态列为取消的数据。


案例

创建新表

CREATE TABLE cmt_tab (
  id UInt32,
  sign Int8,
  date Date,
  name String,
  point String
) 
ENGINE = CollapsingMergeTree(sign)
PARTITION BY toYYYYMM(date)
ORDER BY (name, id)
SAMPLE BY id;

执行结果如下图:

插入数据

INSERT INTO cmt_tab (id, sign, date, name, point) VALUES
(1, 1, '2024-01-01', 'Alice', '10'),
(2, 1, '2024-01-01', 'Bob', '15'),
(3, 1, '2024-01-02', 'Charlie', '20'),
(4, 1, '2024-01-02', 'David', '25'),
(5, 1, '2024-01-03', 'Eve', '30');

-- Mark Alice's row as deleted
-- Mark Bob's row as deleted
INSERT INTO cmt_tab (id, sign, date, name, point) VALUES
(1, -1, '2024-01-01', 'Alice', '10'),
(2, -1, '2024-01-01', 'Bob', '15');

-- Insert Alice's updated row
-- Insert Bob's updated row
INSERT INTO cmt_tab (id, sign, date, name, point) VALUES
(1, 1, '2024-01-01', 'Alice', '12'),
(2, 1, '2024-01-01', 'Bob', '18');

运行结果如下所示:

optimize

OPTIMIZE TABLE cmt_tab;
SELECT
  *
FROM
  cmt_tab;

执行结果如下图所示:

使用场景

大数据中对于数据更新很难做到,比如统计一个网站或TV的用户数,更多场景都是选择用记录每个点的数据,再对数据进行聚合查询。而ClickHouse通过CollapsingMergeTree就可以实现,使得CollapsingMergeTreeTree大部分用于OLAP场景。


VersionedCollapsingMergeTree

这个引擎和CollapsingMergeTree差不多,只是对CollapsingMergeTree引擎加了一个版本,比如可以适用于非实时的在线统计,统计每个节点用户在线的业务。


其他数据源

端口冲突

我们的ClickHouse和Hadoop的9000端口冲突了,看大家是更改ClickHouse的端口,还是Hadoop的端口。

我这里选择修改ClickHouse的端口,从9000到9001。

不过如果你不做HDFS的相关实验,这块冲突不管直接跳过就好。


我这里选择修改 ClickHouse,我已经集群都修改完毕了,所以我连接方式修改为:

clickhouse-client -m --host h121.wzk.icu --port 9001 --user default --password clickhouse@wzk.icu

HDFS

该引擎提供了集成了Apache Hadoop生态系统通过允许管理数据HDFS通过ClickHouse,这个引擎是相似的到文件和URL引擎,但提供Hadoop特定的功能。


用途介绍

ENGINE = HDFS(URI, format)

该URI参数是HDFS中整个文件的URI,该format参数指定一种可用的文件格式。执行SELECT查询时,格式必须支持输入。


示例1

添加新表

设置 HDFS_ENGINE_TABLE 表:


CREATE TABLE hdfs_engine_table(
  name String,
  value UInt32
) ENGINE = HDFS('hdfs://h121.wzk.icu:9000/clickhouse', 'TSV');

运行之后的截图为:

插入数据

INSERT INTO hdfs_engine_table VALUES('one', 1), ('two', 2), ('three', 3);

运行之后截图为:

查询数据

SELECT
  *
FROM
  hdfs_engine_table;

运行之后的截图为:

HDFS 数据查看

实施细节

读取和写入可以并行

不支持:ALTER、SELECT SAMPLE、索引、复制

MySQL

介绍

MySQL 引擎可以对存储在远程MySQL服务器上的数据执行SELECT查询。


调用参数

host:port MySQL服务器地址

database 数据库名称

table 表名称

user 数据库用户

password 用户密码

replace_query 将INSERT INTO查询是否替换为REPLACE_INFO的标志,如果REPLACE_QUERY=1则替换查询

on_duplicate_clause 将ON DUPLCATE KEY UPDATE 表达式添加到INSERT查询语句中。

示例

创建新表

CREATE TABLE mysql_table2 (
  `id` UInt32,
  `name` String,
  `age` UInt32
) ENGINE = MySQL('h122.wzk.icu:3306', 'clickhouse', 'mysql_table2', 'hive', 'hive@wzk.icu')

执行结果如下图所示:

数据库配置

在数据库中,我们要建立好对应的数据库和表:

插入数据

INSERT INTO mysql_table2 VALUES(1, 'wzk', 18);
INSERT INTO mysql_table2 VALUES(2, 'icu', 18);

查询数据

SELECT
  *
FROM
  mysql_table2;

运行之后截图:

Kafka

Apache Kafka 是一个分布式流处理平台,广泛用于构建实时数据管道和流应用。它能够高效地处理大量的实时数据流,常用于日志收集、事件监控、实时分析等场景。ClickHouse 提供了专门的 Kafka 引擎,使其能够直接从 Kafka 中读取数据,实现实时数据流的处理与分析。


创建新表

CREATE TABLE kafka_events
(
    `timestamp` DateTime,
    `event_type` String,
    `user_id` UInt64,
    `event_data` String
)
ENGINE = Kafka
SETTINGS
    kafka_broker_list = 'broker1:9092,broker2:9092',
    kafka_topic_list = 'events_topic',
    kafka_group_name = 'clickhouse_group',
    kafka_format = 'JSONEachRow',
    kafka_num_consumers = 1;

创建目标表并设置 Materialized View

为了将 Kafka 中的数据持久化到 ClickHouse 的表中,通常会创建一个目标表,并通过 Materialized View 实现自动插入。

CREATE TABLE events (
    `timestamp` DateTime,
    `event_type` String,
    `user_id` UInt64,
    `event_data` String
) ENGINE = MergeTree()
ORDER BY timestamp;

CREATE MATERIALIZED VIEW kafka_to_events
TO events
AS SELECT * FROM kafka_events;

插入数据

INSERT INTO events SELECT * FROM kafka_events;

应用场景

实时日志分析:通过 Kafka 收集应用日志,ClickHouse 实时消费并分析日志数据,支持快速故障排查和性能监控。

事件驱动的业务分析:实时跟踪用户行为事件,进行实时的用户行为分析和推荐系统。

实时监控与报警:将监控数据流入 Kafka,ClickHouse 处理并生成实时报警指标。


目录
相关文章
|
2月前
|
关系型数据库 MySQL 定位技术
MySQL与Clickhouse数据库:探讨日期和时间的加法运算。
这一次的冒险就到这儿,期待你的再次加入,我们一起在数据库的世界中找寻下一个宝藏。
79 9
|
2月前
|
存储 关系型数据库 MySQL
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
本文详细介绍了在 MySQL 中创建数据库和表的方法。包括安装 MySQL、用命令行和图形化工具创建数据库、选择数据库、创建表(含数据类型介绍与选择建议、案例分析、最佳实践与注意事项)以及查看数据库和表的内容。文章专业、严谨且具可操作性,对数据管理有实际帮助。
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
|
2月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
3月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
3月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
3月前
|
关系型数据库 MySQL 数据安全/隐私保护
大数据新视界--大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望
本文深入探讨数据库课程设计 MySQL 的数据安全。以医疗、电商、企业案例,详述用户管理、数据加密、备份恢复及网络安全等措施,结合数据安全技术发展趋势,与《大数据新视界 -- 大数据大厂之 MySQL 数据库课程设计》紧密关联,为 MySQL 数据安全提供全面指南。
大数据新视界--大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望
|
3月前
|
存储 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅
本文全面剖析数据库课程设计 MySQL,展现其奇幻魅力与严峻挑战。通过实际案例凸显数据库设计重要性,详述数据安全要点及学习目标。深入阐述备份与恢复方法,并分享优秀实践项目案例。为开发者提供 MySQL 数据库课程设计的全面指南,助力提升数据库设计与管理能力,保障数据安全稳定。
大数据新视界--大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅
|
4月前
|
关系型数据库 MySQL 数据库
|
7月前
|
消息中间件 关系型数据库 MySQL
ClickHouse如何整合数据源:MySQL、HDFS...
ClickHouse 是一个强大的列式数据库管理系统,支持多种数据源。常见的数据源包括外部数据源(如 HDFS、File、URL、Kafka 和 RabbitMQ)、数据库(如 MySQL 和 PostgreSQL)和流式数据(如 Stream 和 Materialized Views)。本文介绍了如何从 MySQL 和 HDFS 读取数据到 ClickHouse 中,包括创建数据库、映射表和查询数据的具体步骤。通过这些方法,用户可以方便地将不同来源的数据导入 ClickHouse 进行高效存储和分析。
386 3

热门文章

最新文章

推荐镜像

更多