【白鲸优化算法】基于适应度距离平衡白鲸优化算法(FDBBWO)求解单目标优化问题附matlab代码

简介: 【白鲸优化算法】基于适应度距离平衡白鲸优化算法(FDBBWO)求解单目标优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

白鲸优化算法(Beluga whale optimization,BWO)由Changting Zhong等人于2022年提出,该算法模拟了白鲸游泳,觅食和“鲸鱼坠落”行为。在本文中,提出了一种基于适应度距离平衡白鲸优化算法(FDBBWO),其灵感来自白鲸的行为,称为白鲸优化 (FDBBWO),以解决优化问题。FDBBWO中建立了探索、开发和鲸落三个阶段,分别对应成对游泳、猎物和落鲸的行为。FDBBWO中的平衡因子和鲸落概率具有自适应性,对控制探索和开发能力起着重要作用。此外,还引入了 Levy 飞行以增强开发阶段的全局收敛性。使用 30 个基准函数测试了所提出的 BWO 的有效性,并进行了定性、定量和可扩展性分析,并将统计结果与其他 15 种元启发式算法进行了比较。根据结果和讨论,FDBBWO是解决单峰和多峰优化问题的竞争算法,通过弗里德曼排名测试,FDBBWO在比较的元启发式算法中基准函数的可扩展性分析中的整体排名第一。最后,四个工程问题展示了FDBBWO在解决复杂的现实世界优化问题中的优点和潜力。

⛄ 部分代码

%_______________________________________________________________________________________%________________________________________________________________________________%


% This function containts full information and implementations of the benchmark

% functions in Table 1, Table 2, and other test functins from the literature


% lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]

% up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]

% dim is the number of variables (dimension of the problem)


function [lb,ub,dim,fobj] = Get_Functions_details(F)



switch F

   case 'F1'

       fobj = @F1;

       lb=-100;

       ub=100;

       dim=10;

       

   case 'F2'

       fobj = @F2;

       lb=-10;

       ub=10;

       dim=10;

       

   case 'F3'

       fobj = @F3;

       lb=-100;

       ub=100;

       dim=10;

       

   case 'F4'

       fobj = @F4;

       lb=-100;

       ub=100;

       dim=10;

       

   case 'F5'

       fobj = @F5;

       lb=-30;

       ub=30;

       dim=10;

       

   case 'F6'

       fobj = @F6;

       lb=-100;

       ub=100;

       dim=10;

       

   case 'F7'

       fobj = @F7;

       lb=-1.28;

       ub=1.28;

       dim=10;

       

   case 'F8'

       fobj = @F8;

       lb=-500;

       ub=500;

       dim=10;

       

   case 'F9'

       fobj = @F9;

       lb=-5.12;

       ub=5.12;

       dim=10;

       

   case 'F10'

       fobj = @F10;

       lb=-32;

       ub=32;

       dim=10;

       

   case 'F11'

       fobj = @F11;

       lb=-600;

       ub=600;

       dim=10;

       

   case 'F12'

       fobj = @F12;

       lb=-50;

       ub=50;

       dim=10;

       

   case 'F13'

       fobj = @F13;

       lb=-50;

       ub=50;

       dim=10;

       

   case 'F14'

       fobj = @F14;

       lb=-65.536;

       ub=65.536;

       dim=2;

       

   case 'F15'

       fobj = @F15;

       lb=-5;

       ub=5;

       dim=4;

       

   case 'F16'

       fobj = @F16;

       lb=-5;

       ub=5;

       dim=2;

       

   case 'F17'

       fobj = @F17;

       lb=[-5,0];

       ub=[10,15];

       dim=2;

       

   case 'F18'

       fobj = @F18;

       lb=-2;

       ub=2;

       dim=2;

       

   case 'F19'

       fobj = @F19;

       lb=0;

       ub=1;

       dim=3;

       

   case 'F20'

       fobj = @F20;

       lb=0;

       ub=1;

       dim=6;    

       

   case 'F21'

       fobj = @F21;

       lb=0;

       ub=10;

       dim=4;    

       

   case 'F22'

       fobj = @F22;

       lb=0;

       ub=10;

       dim=4;    

       

   case 'F23'

       fobj = @F23;

       lb=0;

       ub=10;

       dim=4;            

end


end


% F1


function o = F1(x)

o=sum(x.^2);

end


% F2


function o = F2(x)

o=sum(abs(x))+prod(abs(x));

end


% F3


function o = F3(x)

dim=size(x,2);

o=0;

for i=1:dim

   o=o+sum(x(1:i))^2;

end

end


% F4


function o = F4(x)

o=max(abs(x));

end


% F5


function o = F5(x)

dim=size(x,2);

o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);

end


% F6


function o = F6(x)

o=sum(abs((x+.5)).^2);

end


% F7


function o = F7(x)

dim=size(x,2);

o=sum([1:dim].*(x.^4))+rand;

end


% F8


function o = F8(x)

o=sum(-x.*sin(sqrt(abs(x))));

end


% F9


function o = F9(x)

dim=size(x,2);

o=sum(x.^2-10*cos(2*pi.*x))+10*dim;

end


% F10


function o = F10(x)

dim=size(x,2);

o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);

end


% F11


function o = F11(x)

dim=size(x,2);

o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;

end


% F12


function o = F12(x)

dim=size(x,2);

o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...

(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));

end


% F13


function o = F13(x)

dim=size(x,2);

o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...

((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));

end


% F14


function o = F14(x)

aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...

-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];


for j=1:25

   bS(j)=sum((x'-aS(:,j)).^6);

end

o=(1/500+sum(1./([1:25]+bS))).^(-1);

end


% F15


function o = F15(x)

aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];

bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;

o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);

end


% F16


function o = F16(x)

o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);

end


% F17


function o = F17(x)

o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;

end


% F18


function o = F18(x)

o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...

   (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));

end


% F19


function o = F19(x)

aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];

pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];

o=0;

for i=1:4

   o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end


% F20


function o = F20(x)

aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];

cH=[1 1.2 3 3.2];

pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...

.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];

o=0;

for i=1:4

   o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end


% F21


function o = F21(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:5

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


% F22


function o = F22(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:7

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


% F23


function o = F23(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:10

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


function o=Ufun(x,a,k,m)

o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));

end

⛄ 运行结果

⛄ 参考文献

PAÇACI, S. (2023). IMPROVEMENT OF BELUGA WHALE OPTIMIZATION ALGORITHM BY DISTANCE BALANCE SELECTION METHOD. Yalvaç Akademi Dergisi, 8(1), 125-144.

[1]蔡海良胡凯李军邢小雷. 基于BWO-ELM算法与VR-GIS技术的电力光缆故障诊断及定位研究[J]. 计算机测量与控制, 2022, 30(12):98-104.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
2天前
|
人工智能 算法 测试技术
论文介绍:进化算法优化模型融合策略
【5月更文挑战第3天】《进化算法优化模型融合策略》论文提出使用进化算法自动化创建和优化大型语言模型,通过模型融合提升性能并减少资源消耗。实验显示,这种方法在多种基准测试中取得先进性能,尤其在无特定任务训练情况下仍能超越参数更多模型。同时,该技术成功应用于创建具有文化意识的日语视觉-语言模型。然而,模型融合可能产生逻辑不连贯响应和准确性问题,未来工作将聚焦于图像扩散模型、自动源模型选择及生成自我改进的模型群体。[论文链接: https://arxiv.org/pdf/2403.13187.pdf]
71 1
|
8天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的算法优化之路
【4月更文挑战第28天】 在机器学习的广阔天地中,算法是构建智能系统的核心。本文将深入探讨算法优化的策略与实践,从理论到应用,揭示提升模型性能的关键因素。我们将穿梭于参数调整、特征工程、模型选择和超参数优化等关键环节,剖析如何通过迭代改进,达到提高准确率、减少误差的目的。此文不仅为初学者提供启示,也为经验丰富的开发者提供深度思考,共同探索算法的极致潜能。
|
9天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据处理到算法优化
【4月更文挑战第28天】在数据驱动的时代,构建一个高效的机器学习模型是实现智能决策和预测的关键。本文将深入探讨如何通过精确的数据预处理、选择合适的学习算法以及进行细致的参数调优来提升模型的性能。我们将介绍一系列实用的技术和策略,包括特征工程、模型评估、超参数调整以及使用集成学习方法来增强模型的泛化能力。通过这些方法,读者将能够更好地理解并应用机器学习技术来解决实际问题。
|
9天前
|
机器学习/深度学习 自然语言处理 算法
深度解析深度学习中的优化算法:从梯度下降到自适应方法
【4月更文挑战第28天】 在深度学习模型训练的复杂数学迷宫中,优化算法是寻找最优权重配置的关键导航者。本文将深入探讨几种主流的优化策略,揭示它们如何引导模型收敛至损失函数的最小值。我们将比较经典的批量梯度下降(BGD)、随机梯度下降(SGD)以及动量概念的引入,进一步探索AdaGrad、RMSProp和Adam等自适应学习率方法的原理与实际应用。通过剖析这些算法的理论基础和性能表现,我们旨在为读者提供一个关于选择合适优化器的参考视角。
|
10天前
|
算法 索引
数据结构与算法-并查集多种实现以及优化步骤
数据结构与算法-并查集多种实现以及优化步骤
38 0
|
12天前
|
机器学习/深度学习 人工智能 算法
揭秘深度学习中的优化算法
【4月更文挑战第24天】 在深度学习的广阔天地中,优化算法扮演着至关重要的角色。本文将深入探讨几种主流的优化算法,包括梯度下降法、随机梯度下降法、Adam等,并分析它们的特点和适用场景。我们将通过理论分析和实例演示,揭示这些优化算法如何帮助模型更高效地学习参数,从而提高模型的性能。
|
12天前
|
人工智能 达摩院 算法
什么是优化技术?给算法小白同学的快速讲解和上手文
本文作者用一个曾经小白学习的视角,来讲解什么是优化问题,以及要如何用这个优化技术。
23776 0
|
19天前
|
算法
PID算法原理分析及优化
这篇文章介绍了PID控制方法,这是一种广泛应用的控制算法,具有结构简单、鲁棒性强等特点。PID通过比例、积分和微分三个部分调整控制量,以减少系统输出与目标值的偏差。文章详细阐述了PID的基本原理,包括比例、积分和微分调节的作用,并提到积分饱和和微分项振荡的问题以及对应的优化策略,如积分分离、变速积分和微分先行等。此外,还提到了数字PID的实现形式,如位置式、增量式和步进式,以及串级PID在电机控制等领域的应用。
93 10
|
21天前
|
机器学习/深度学习 数据采集 算法
Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据
Python中基于网格搜索算法优化的深度学习模型分析糖尿病数据
|
21天前
|
算法
R语言使用随机技术差分进化算法优化的Nelson-Siegel-Svensson模型
R语言使用随机技术差分进化算法优化的Nelson-Siegel-Svensson模型

热门文章

最新文章