【LSSVM时序预测】基于海洋捕食者算法优化最小支持向量机MPA-LSSVM实现交通流时序数据预测附matlab代码

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 【LSSVM时序预测】基于海洋捕食者算法优化最小支持向量机MPA-LSSVM实现交通流时序数据预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

为了智能化解决城市道路交通系统存在的问题,提高短时交通流预测的准确性,采用海洋捕食者算法优化的最小二乘支持向量机(LSSVM)建立短时交通流量预测模型.利用海洋捕食者算法对LSSVM中的惩罚因子和核函数参数进行优化,得到最优预测模型.以车辆行驶平均速度和占有率作为模型输入,交通流量作为输出进行预测仿真试验.试验结果表明:本文采用的优化LSSVM模型进行仿真试验的预测误差有所减小,输出结果更接近真实值.

⛄ 部分代码

%_________________________________________________________________________%  Marine Predators Algorithm source code (Developed in MATLAB R2015a)%%  programming: Afshin Faramarzi & Seyedali Mirjalili%% paper:%  A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, %  Marine Predators Algorithm: A Nature-inspired Metaheuristic%  Expert Systems with Applications%  DOI: doi.org/10.1016/j.eswa.2020.113377%  %  E-mails: afaramar@hawk.iit.edu            (Afshin Faramarzi)%           muh182@iit.edu                   (Mohammad Heidarinejad)%           ali.mirjalili@laureate.edu.au    (Seyedali Mirjalili) %           gandomi@uts.edu.au               (Amir H Gandomi)%_________________________________________________________________________function [Top_predator_pos,Top_predator_fit,Convergence_curve]=MPA(SearchAgents_no,Max_iter,lb,ub,dim,fobj)Top_predator_pos=zeros(1,dim);Top_predator_fit=inf; Convergence_curve=zeros(1,Max_iter);stepsize=zeros(SearchAgents_no,dim);fitness=inf(SearchAgents_no,1);Prey=initialization(SearchAgents_no,dim,ub,lb);  Xmin=repmat(ones(1,dim).*lb,SearchAgents_no,1);Xmax=repmat(ones(1,dim).*ub,SearchAgents_no,1);         Iter=0;FADs=0.2;P=0.5;while Iter<Max_iter         %------------------- Detecting top predator -----------------     for i=1:size(Prey,1)              Flag4ub=Prey(i,:)>ub;    Flag4lb=Prey(i,:)<lb;        Prey(i,:)=(Prey(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;                                fitness(i,1)=fobj(Prey(i,:));                          if fitness(i,1)<Top_predator_fit        Top_predator_fit=fitness(i,1);        Top_predator_pos=Prey(i,:);     end           end          %------------------- Marine Memory saving -------------------      if Iter==0   fit_old=fitness;    Prey_old=Prey; end       Inx=(fit_old<fitness);  Indx=repmat(Inx,1,dim);  Prey=Indx.*Prey_old+~Indx.*Prey;  fitness=Inx.*fit_old+~Inx.*fitness;          fit_old=fitness;    Prey_old=Prey;     %------------------------------------------------------------         Elite=repmat(Top_predator_pos,SearchAgents_no,1);  %(Eq. 10)  CF=(1-Iter/Max_iter)^(2*Iter/Max_iter);                              RL=0.05*levy(SearchAgents_no,dim,1.5);   %Levy random number vector RB=randn(SearchAgents_no,dim);          %Brownian random number vector             for i=1:size(Prey,1)     for j=1:size(Prey,2)               R=rand();          %------------------ Phase 1 (Eq.12) -------------------        if Iter<Max_iter/3           stepsize(i,j)=RB(i,j)*(Elite(i,j)-RB(i,j)*Prey(i,j));                              Prey(i,j)=Prey(i,j)+P*R*stepsize(i,j);                        %--------------- Phase 2 (Eqs. 13 & 14)----------------       elseif Iter>Max_iter/3 && Iter<2*Max_iter/3                    if i>size(Prey,1)/2            stepsize(i,j)=RB(i,j)*(RB(i,j)*Elite(i,j)-Prey(i,j));            Prey(i,j)=Elite(i,j)+P*CF*stepsize(i,j);          else            stepsize(i,j)=RL(i,j)*(Elite(i,j)-RL(i,j)*Prey(i,j));                                 Prey(i,j)=Prey(i,j)+P*R*stepsize(i,j);           end                    %----------------- Phase 3 (Eq. 15)-------------------       else                       stepsize(i,j)=RL(i,j)*(RL(i,j)*Elite(i,j)-Prey(i,j));            Prey(i,j)=Elite(i,j)+P*CF*stepsize(i,j);             end        end                                           end                 %------------------ Detecting top predator ------------------          for i=1:size(Prey,1)              Flag4ub=Prey(i,:)>ub;      Flag4lb=Prey(i,:)<lb;      Prey(i,:)=(Prey(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;      fitness(i,1)=fobj(Prey(i,:));              if fitness(i,1)<Top_predator_fit          Top_predator_fit=fitness(i,1);         Top_predator_pos=Prey(i,:);      end       end             %---------------------- Marine Memory saving ----------------     if Iter==0    fit_old=fitness;    Prey_old=Prey; end         Inx=(fit_old<fitness);    Indx=repmat(Inx,1,dim);    Prey=Indx.*Prey_old+~Indx.*Prey;    fitness=Inx.*fit_old+~Inx.*fitness;            fit_old=fitness;    Prey_old=Prey;     %---------- Eddy formation and FADs? effect (Eq 16) -----------                                if rand()<FADs     U=rand(SearchAgents_no,dim)<FADs;                                                                                                   Prey=Prey+CF*((Xmin+rand(SearchAgents_no,dim).*(Xmax-Xmin)).*U);  else     r=rand();  Rs=size(Prey,1);     stepsize=(FADs*(1-r)+r)*(Prey(randperm(Rs),:)-Prey(randperm(Rs),:));     Prey=Prey+stepsize;  end                                                          Iter=Iter+1;    Convergence_curve(Iter)=Top_predator_fit;        end

⛄ 运行结果

⛄ 参考文献

[1] 谷远利, 张源, 芮小平,等. 基于免疫算法优化LSSVM的短时交通流预测[J]. 吉林大学学报:工学版, 2019, 49(6):6.

[2] 张浩怡, 李春祥. 基于萤火虫算法优化LSSVM的台风风速预测[C]// 中国土木工程学会;中国空气动力学会. 中国土木工程学会;中国空气动力学会, 2017.

[3] 张冬梅, 徐卫亚, 赵博. 基于COA-LSSVM模型的边坡位移时序预测[J]. 水电能源科学, 2014, 32(5):5.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
小试牛刀,一键部署电商商城
SAE 仅需一键,极速部署一个微服务电商商城,体验 Serverless 带给您的全托管体验,一起来部署吧!
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
打赏
0
0
0
0
845
分享
相关文章
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
106 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等