深入浅出阿里数据同步神器:Canal原理+配置+实战全网最全解析!

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: canal 翻译为管道,主要用途是基于 MySQL 数据库的增量日志 Binlog 解析,提供增量数据订阅和消费。早期阿里巴巴因为杭州和美国双机房部署,存在跨机房同步的业务需求,实现方式主要是基于业务 trigger 获取增量变更。从 2010 年开始,业务逐步尝试数据库日志解析获取增量变更进行同步,由此衍生出了大量的数据库增量订阅和消费业务。

简介

canal 翻译为管道,主要用途是基于 MySQL 数据库的增量日志 Binlog 解析,提供增量数据订阅和消费。

早期阿里巴巴因为杭州和美国双机房部署,存在跨机房同步的业务需求,实现方式主要是基于业务 trigger 获取增量变更。从 2010 年开始,业务逐步尝试数据库日志解析获取增量变更进行同步,由此衍生出了大量的数据库增量订阅和消费业务。

基于日志增量订阅和消费的业务包括

  • 数据库镜像;
  • 数据库实时备份;
  • 索引构建和实时维护(拆分异构索引、倒排索引等);
  • 业务 cache 刷新;
  • 带业务逻辑的增量数据处理;

当前的 canal 支持源端 MySQL 的版本包括 5.1.x,5.5.x,5.6.x,5.7.x,8.0.x。

工作原理

MySQL主备复制原理

网络异常,图片无法展示
|

网络异常,图片无法展示
|

  • MySQL master 将数据变更写入二进制日志( binary log, 其中记录叫做二进制日志事件 binary log events,可以通过 show binlog events 进行查看);
  • MySQL slave 将 master 的 binary log events 拷贝到它的中继日志(relay log);
  • MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据;

canal 工作原理

网络异常,图片无法展示
|

  • canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL slave ,向 MySQL master 发送 dump 协议;
  • MySQL master 收到 dump 请求,开始推送 binary log 给 slave (即 canal );
  • canal 解析 binary log 对象(原始为 byte 流);

github地址:
https://github.com/alibaba/canal

完整wiki地址:
https://github.com/alibaba/canal/wiki

Canal架构

网络异常,图片无法展示
|

一个 server 代表一个 canal 运行实例,对应于一个 jvm,一个 instance 对应一个数据队列。

instance模块:

  • eventParser :数据源接入,模拟 slave 协议和 master 进行交互,协议解析;
  • eventSink :Parser 和 Store 链接器,进行数据过滤、加工、分发的工作;
  • eventStore :数据存储;
  • metaManager :增量订阅&消费信息管理器;

instance 是 canal 数据同步的核心,在一个 canal 实例中只有启动 instace 才能进行数据的同步任务。一个 canal server 实例中可以创建多个 Canal Instance 实例。每一个 Canal Instance 可以看成是对应一个 MySQL 实例。

Canal-HA机制

所谓 HA 即高可用,是 High Available 的简称。通常我们一个服务要支持高可用都需要借助于第三方的分布式同步协调服务,最常用的是zookeeper 。canal 实现高可用,也是依赖了zookeeper 的几个特性:watcher 和 EPHEMERAL 节点。

canal 的高可用分为两部分:canal server 和 canal client

  • canal server: 为了减少对 mysql dump 的请求,不同 server 上的 instance(不同 server 上的相同 instance)要求同一时间只能有一个处于 running,其他的处于 standby 状态,也就是说,只会有一个 canal server 的 instance 处于 active 状态,但是当这个 instance down 掉后会重新选出一个 canal server。
  • canal client: 为了保证有序性,一份 instance 同一时间只能由一个 canal client 进行 get/ack/rollback 操作,否则客户端接收无法保证有序。

server ha 的架构图如下:

网络异常,图片无法展示
|

大致步骤:

  1. canal server 要启动某个 canal instance 时都先向 zookeeper 进行一次尝试启动判断(实现:创建 EPHEMERAL 节点,谁创建成功就允许谁启动);
  2. 创建 zookeeper 节点成功后,对应的 canal server 就启动对应的 canal instance,没有创建成功的 canal instance 就会处于 standby 状态。
  3. 一旦 zookeeper 发现 canal server A 创建的 instance 节点消失后,立即通知其他的 canal server 再次进行步骤1的操作,重新选出一个 canal server 启动 instance。
  4. canal client 每次进行 connect 时,会首先向 zookeeper 询问当前是谁启动了canal instance,然后和其建立链接,一旦链接不可用,会重新尝试 connect。

Canal Client 的方式和 canal server 方式类似,也是利用 zookeeper 的抢占 EPHEMERAL 节点的方式进行控制。

应用场景

同步缓存 Redis /全文搜索 ES

当数据库变更后通过 binlog 进行缓存/ES的增量更新。当缓存/ES更新出现问题时,应该回退 binlog 到过去某个位置进行重新同步,并提供全量刷新缓存/ES的方法。

网络异常,图片无法展示
|

下发任务

当数据变更时需要通知其他依赖系统。其原理是任务系统监听数据库变更,然后将变更的数据写入 MQ/kafka 进行任务下发,比如商品数据变更后需要通知商品详情页、列表页、搜索页等相关系统。

这种方式可以保证数据下发的精确性,通过 MQ 发送消息通知变更缓存是无法做到这一点的,而且业务系统中不会散落着各种下发 MQ 的代码,从而实现了下发归集。

网络异常,图片无法展示
|

数据异构

在大型网站架构中,DB都会采用分库分表来解决容量和性能问题。但分库分表之后带来的新问题,比如不同维度的查询或者聚合查询,此时就会非常棘手。一般我们会通过数据异构机制来解决此问题。

所谓的数据异构,那就是将需要 join 查询的多表按照某一个维度又聚合在一个 DB 中让你去查询,canal 就是实现数据异构的手段之一。

网络异常,图片无法展示
|

MySQL 配置

开启 binlog

首先在 mysql 的配置文件目录中查找配置文件 my.cnf(Linux环境)

[root@iZ2zebiempwqvoc2xead5lZ mysql]# find / -name my.cnf
/etc/my.cnf
[root@iZ2zebiempwqvoc2xead5lZ mysql]# cd /etc
[root@iZ2zebiempwqvoc2xead5lZ etc]# vim my.cnf

在 [mysqld] 区块下添加配置开启 binlog

server-id=1 #master端的ID号【必须是唯一的】;
log_bin=mysql-bin #同步的日志路径,一定注意这个目录要是mysql有权限写入的
binlog-format=row #行级,记录每次操作后每行记录的变化。
binlog-do-db=cheetah #指定库,缩小监控的范围。

重启 mysql:service mysqld restart,会发现在 /var/lib/mysql 下会生成两个文件 mysql-bin.000001 和 mysql-bin.index,当 mysql 重启或到达单个文件大小的阈值时,新生一个文件,按顺序编号 mysql-bin.000002,以此类推。

扩展

binlog 日志有三种格式,可以通过 binlog_format 参数指定。

statement

记录的内容是 SQL语句 原文,比如执行一条 update T set update_time=now() where id=1,记录的内容如下

网络异常,图片无法展示
|

同步数据时,会执行记录的 SQL 语句,但是有个问题,update_time=now() 这里会获取当前系统时间,直接执行会导致与原库的数据不一致

row

为了解决上述问题,我们需要指定为 row,记录的内容不再是简单的 SQL 语句了,还包含操作的具体数据,记录内容如下。

网络异常,图片无法展示
|

row 格式记录的内容看不到详细信息,要通过 mysql binlog 工具解析出来。

update_time=now() 变成了具体的时间 update_time=1627112756247,条件后面的 @1、@2、@3 都是该行数据第1个~3个字段的原始值(假设这张表只有3个字段)。

这样就能保证同步数据的一致性,通常情况下都是指定为 row,这样可以为数据库的恢复与同步带来更好的可靠性。

缺点:占空间、恢复与同步时消耗更多的IO资源,影响执行速度。

mixed

MySQL 会判断这条 SQL 语句是否可能引起数据不一致,如果是,就用 row 格式,否则就用 statement 格式。

配置权限

CREATE USER canal IDENTIFIED BY 'XXXX';   #创建用户名和密码都为 canal 的用户
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%'; #授予该用户对所有数据库和表的查询、复制主节点数据的操作权限
FLUSH PRIVILEGES; #重新加载权限

注意:如果密码设置的过于简单,会报以下错误

ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

MySQL 有密码设置的规范,可以自行百度。

Canal 配置

官网下载地址,我下载的版本是 canal.deployer-1.1.6.tar.gz,然后通过 psftp 上传到服务器。

解压:tar -zxvf canal.deployer-1.1.6.tar.gz

配置

通过查看 conf/canal.properties 配置,发现需要暴漏三个端口

canal.admin.port = 11110
canal.port = 11111
canal.metrics.pull.port = 11112

修改 conf/canal.properties 配置

# 指定实例,多个实例使用逗号分隔: canal.destinations = example1,example2
canal.destinations = example

修改 conf/example/instance.properties 实例配置

# 配置 slaveId 自定义,不等于 mysql 的 server Id 即可
canal.instance.mysql.slaveId=10 
# 数据库地址:自己的数据库ip+端口
canal.instance.master.address=127.0.0.1:3306 
# 数据库用户名和密码 
canal.instance.dbUsername=xxx 
canal.instance.dbPassword=xxx
#代表数据库的编码方式对应到 java 中的编码类型,比如 UTF-8,GBK , ISO-8859-1
canal.instance.connectionCharset = UTF-8
# 指定库和表,这里的 .* 表示 canal.instance.master.address 下面的所有数据库
canal.instance.filter.regex=.*\\..*

如果系统是1个 cpu,需要将 canal.instance.parser.parallel 设置为 false

启动

需要在安装目录 /usr/local 下执行:sh bin/startup.sh 或者 ./bin/startup.sh

报错

发现在 logs 下没有生成 canal.log 日志,在进程命令中 ps -ef | grep canal 也查不到 canal 的进程。

解决

在目录 logs 中存在文件 canal_stdout.log ,文件内容如下:

网络异常,图片无法展示
|

报错信息提示内存不足,Java 运行时环境无法继续。更详细的错误日志在文件:/usr/local/bin/hs_err_pid25186.log 中。

既然是内存原因,那就检查一下自己的内存,执行命令free -h ,发现可用内存仅为 96M,应该是内存问题,解决方法如下:

  • 杀死运行的一些进程;
  • 增加虚拟机的内存;
  • 修改 canal 启动时所需要的内存;

我就是用的第三种方法,首先用 vim 打开 startup.sh 修改内存参数,可以对照我的进行修改,按照自己服务器剩余内存进行修改,这里我将内存调整到了 80M。

网络异常,图片无法展示
|

改为 -server -Xms80m -Xmx80m -Xmn80m -XX:SurvivorRatio=2 -XX:PermSize=66m -XX:MaxPermSize=80m -Xss256k -XX:-UseAdaptiveSizePolicy -XX:MaxTenuringThreshold=15 -XX:+DisableExplicitGC -XX:+UseConcMarkSweepGC -XX:+CMSParallelRemarkEnabled -XX:+UseCMSInitiatingOccupancyOnly -XX:+HeapDumpOnOutOfMemoryError

改完之后执行命令发现依旧报错:found canal.pid , Please run stop.sh first ,then startup.sh 意思是找到了 canal.pid,请先运行stop.sh。

这是由于 canal 服务不正常退出服务导致的,比如说虚拟机强制重启。

执行 stop.sh 命令后重新启动,成功运行,成功运行后可以在 canal/logs 文件夹中生成 canal.log 日志。

网络异常,图片无法展示
|

实战

引入依赖

<dependency>
  <groupId>com.alibaba.otter</groupId>
  <artifactId>canal.client</artifactId>
  <version>1.1.0</version>
</dependency>

代码样例

代码样例来自官网,仅用于测试使用

public class SimpleCanalClientExample {
    public static void main(String args[]) {
        // 创建链接:换成自己的数据库ip地址
        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("127.0.0.1",
                11111), "example", "", "");
        int batchSize = 1000;
        int emptyCount = 0;
        try {
            connector.connect();
            connector.subscribe(".*\\..*");
            connector.rollback();
            int totalEmptyCount = 120;
            while (emptyCount < totalEmptyCount) {
                Message message = connector.getWithoutAck(batchSize); // 获取指定数量的数据
                long batchId = message.getId();
                int size = message.getEntries().size();
                if (batchId == -1 || size == 0) {
                    emptyCount++;
                    System.out.println("empty count : " + emptyCount);
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                    }
                } else {
                    emptyCount = 0;
                    printEntry(message.getEntries());
                }
                connector.ack(batchId); // 提交确认
            }
            System.out.println("empty too many times, exit");
        } finally {
            connector.disconnect();
        }
    }
    private static void printEntry(List<CanalEntry.Entry> entrys) {
        for (CanalEntry.Entry entry : entrys) {
            if (entry.getEntryType() == CanalEntry.EntryType.TRANSACTIONBEGIN || entry.getEntryType() == CanalEntry.EntryType.TRANSACTIONEND) {
                continue;
            }
            CanalEntry.RowChange rowChage = null;
            try {
                rowChage = CanalEntry.RowChange.parseFrom(entry.getStoreValue());
            } catch (Exception e) {
                throw new RuntimeException("ERROR ## parser of eromanga-event has an error , data:" + entry.toString(),
                        e);
            }
            CanalEntry.EventType eventType = rowChage.getEventType();
            System.out.println(String.format("================> binlog[%s:%s] , name[%s,%s] , eventType : %s",
                    entry.getHeader().getLogfileName(), entry.getHeader().getLogfileOffset(),
                    entry.getHeader().getSchemaName(), entry.getHeader().getTableName(),
                    eventType));
            for (CanalEntry.RowData rowData : rowChage.getRowDatasList()) {
                if (eventType == CanalEntry.EventType.DELETE) {
                    printColumn(rowData.getBeforeColumnsList());
                } else if (eventType == CanalEntry.EventType.INSERT) {
                    printColumn(rowData.getAfterColumnsList());
                } else {
                    System.out.println("-------> before");
                    printColumn(rowData.getBeforeColumnsList());
                    System.out.println("-------> after");
                    printColumn(rowData.getAfterColumnsList());
                }
            }
        }
    }
    private static void printColumn(List<CanalEntry.Column> columns) {
        for (CanalEntry.Column column : columns) {
            System.out.println(column.getName() + " : " + column.getValue() + "    update=" + column.getUpdated());
        }
    }
}

测试

启动项目,打印日志

empty count : 1
empty count : 2
empty count : 3
empty count : 4

手动修改数据库中的字段:

================> binlog[mysql-bin.000002:8377] , name[cheetah,product_info] , eventType : UPDATE
-------> before
id : 3    update=false
name : java开发1    update=false
price : 87.0    update=false
create_date : 2021-03-27 22:43:31    update=false
update_date : 2021-03-27 22:43:34    update=false
-------> after
id : 3    update=false
name : java开发    update=true
price : 87.0    update=false
create_date : 2021-03-27 22:43:31    update=false
update_date : 2021-03-27 22:43:34    update=false

可以看出是在 mysql-bin.000002文件中,数据库名称 cheetah ,表名 product_info,事件类型:update。

本文就是愿天堂没有BUG给大家分享的内容,大家有收获的话可以分享下,想学习更多的话可以到微信公众号里找我,我等你哦。

相关文章
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
HarmonyOS Next~鸿蒙应用框架开发实战:Ability Kit与Accessibility Kit深度解析
本书深入解析HarmonyOS应用框架开发,聚焦Ability Kit与Accessibility Kit两大核心组件。Ability Kit通过FA/PA双引擎架构实现跨设备协同,支持分布式能力开发;Accessibility Kit提供无障碍服务构建方案,优化用户体验。内容涵盖设计理念、实践案例、调试优化及未来演进方向,助力开发者打造高效、包容的分布式应用,体现HarmonyOS生态价值。
100 27
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
258 7
深入解析图神经网络注意力机制:数学原理与可视化实现
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
188 4
JSON数据解析实战:从嵌套结构到结构化表格
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
205 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
112 2
可穿戴设备如何重塑医疗健康:技术解析与应用实战
可穿戴设备如何重塑医疗健康:技术解析与应用实战
79 4
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
96 3
【实战解析】smallredbook.item_get_video API:小红书视频数据获取与电商应用指南
本文介绍小红书官方API——`smallredbook.item_get_video`的功能与使用方法。该接口可获取笔记视频详情,包括无水印直链、封面图、时长、文本描述、标签及互动数据等,并支持电商场景分析。调用需提供`key`、`secret`和`num_iid`参数,返回字段涵盖视频链接、标题、标签及用户信息等。同时,文章提供了电商实战技巧,如竞品监控与个性化推荐,并列出合规注意事项及替代方案对比。最后解答了常见问题,如笔记ID获取与视频链接时效性等。
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等