基于正交对立学习的改进麻雀搜索算法( OOLSSA)附matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
EMR Serverless StarRocks,5000CU*H 48000GB*H
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 基于正交对立学习的改进麻雀搜索算法( OOLSSA)附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对麻雀搜索算法种群多样性少,局部搜索能力弱的问题,本文提出了基于正交对立学习的改进型麻雀搜索算法(OOLSSA).首先,在算法中引入正态变异算子,丰富算法种群多样性;其次,利用对立学习策略,增强算法跳出局部最优的能力;然后,在加入者更新之后引入正交对立学习机制,加快算法的收敛速度;最后,基于15个基准测试函数与6个传统优化算法和2个改进型算法进行仿真实验,非参数Friedman检验以及算法平衡能力进行分析,评估OOLSSA算法寻优性能.仿真结果证明,OOLSSA与其余8种算法相比,算法的探索开发能力以及收敛速度都表现良好.

⛄ 部分代码

%_________________________________________________________________________%

% 麻雀优化算法             %

%_________________________________________________________________________%

function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)


ST = 0.6;%预警值

PD = 0.7;%发现者的比列,剩下的是加入者

SD = 0.2;%意识到有危险麻雀的比重


PDNumber = round(pop*PD); %发现者数量

SDNumber = round(SD*pop);%意识到有危险麻雀数量

if(max(size(ub)) == 1)

  ub = ub.*ones(1,dim);

  lb = lb.*ones(1,dim);  

end


%种群初始化

X0=initialization(pop,dim,ub,lb);

X = X0;

%计算初始适应度值

fitness = zeros(1,pop);

for i = 1:pop

  fitness(i) =  fobj(X(i,:));

end

[fitness, index]= sort(fitness);%排序

BestF = fitness(1);

WorstF = fitness(end);

GBestF = fitness(1);%全局最优适应度值

for i = 1:pop

   X(i,:) = X0(index(i),:);

end

curve=zeros(1,Max_iter);

GBestX = X(1,:);%全局最优位置

X_new = X;

for i = 1: Max_iter

   

   BestF = fitness(1);

   WorstF = fitness(end);


   

   R2 = rand(1);

  for j = 1:PDNumber

     if(R2<ST)

         X_new(j,:) = X(j,:).*exp(-j./(rand()*Max_iter));

     else

         X_new(j,:) = X(j,:) + randn().*ones(1,dim);

     end    

  end

  for j = PDNumber+1:pop

%        if(j>(pop/2))

       if(j>(pop - PDNumber)/2 + PDNumber)

         X_new(j,:)= randn(1,dim).*exp((X(end,:) - X(j,:))/j^2);

      else

         %产生-1,1的随机数

         A = ones(1,dim);

         for a = 1:dim

           if(rand()>0.5)

               A(a) = -1;

           end

         end

         AA = A'*inv(A*A');    

         X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';

      end

  end

  Temp = randperm(pop);

  SDchooseIndex = Temp(1:SDNumber);

  for j = 1:SDNumber

      if(fitness(SDchooseIndex(j))>BestF)

          X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));

      elseif(fitness(SDchooseIndex(j))== BestF)

          K = 2*rand() -1;

          X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));

      end

  end

  %边界控制

  for j = 1:pop

      for a = 1: dim

          if(X_new(j,a)>ub)

              X_new(j,a) =ub(a);

          end

          if(X_new(j,a)<lb)

              X_new(j,a) =lb(a);

          end

      end

  end

  %更新位置

  for j=1:pop

   fitness_new(j) = fobj(X_new(j,:));

  end

  for j = 1:pop

   if(fitness_new(j) < GBestF)

      GBestF = fitness_new(j);

       GBestX = X_new(j,:);  

   end

  end

  X = X_new;

  fitness = fitness_new;

   %排序更新

  [fitness, index]= sort(fitness);%排序

  BestF = fitness(1);

  WorstF = fitness(end);

  for j = 1:pop

     X(j,:) = X(index(j),:);

  end

  curve(i) = GBestF;

end

Best_pos =GBestX;

Best_score = curve(end);

end

⛄ 运行结果

⛄ 参考文献

[1]王天雷, 张绮媚, 李俊辉,等. 基于正交对立学习的改进麻雀搜索算法[J]. 电子测量技术, 2022(010):045.

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
11天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
27天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。