【LSTM回归预测】基于多元结合麻雀算法优化LSTM实现风电数据预测附matlab代码

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【LSTM回归预测】基于多元结合麻雀算法优化LSTM实现风电数据预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对海上风电功率预测精度差的问题,提出一种改进的SSA-LSTM模型.选择在时间序列问题处理上具有良好性能的长短期记忆(LSTM)神经网络,通过寻优能力强、收敛速度快的麻雀搜索算法对LSTM网络隐含层神经元个数、学习率和训练次数等超参数进行优化,得到SSA-LSTM模型.采用江苏省盐城市某400 MW风电场功率数据进行算例分析,在不同条件变量下分别使用SSA-LSTM模型、LSTM模型预测,仿真结果表明,SSA-LSTM模型具有更高的预测精度、更好的预测稳定性.

⛄ 部分代码

function [fMin , bestX, Convergence_curve] = SSA( N, M, lb, ub, dim, fobj)

X=initialization(N,dim,ub,lb);

P_percent = 0.2;    % 发现者的种群规模占总种群规模的百分比


pNum = round(N*P_percent);    % 发现者数量20%


SD = pNum/2;      % 警戒者数量10%


ST = 0.8;           % 安全阈值


% 初始化

for i = 1:N

%     X(i, :) = lb + (ub - lb) .* rand(1, dim);

   fitness(i) = fobj(X(i, :));

end

pFit = fitness;

pX = X;                            % 与pFit相对应的个体最佳位置

[fMin, bestI] = min(fitness);      % fMin表示全局最优解

bestX = X(bestI, :);             % bestX表示全局最优位置


%% 迭代寻优

for t = 1 : M      

   [~, sortIndex] = sort(pFit);            % 排序

   

   [fmax, B] = max(pFit);

   worst = X(B, :);

   

   %% 发现者位置更新

   r2 = rand(1);

   if r2 < ST

       for i = 1:pNum      % Equation (3)

           r1 = rand(1);

           X(sortIndex(i), :) = pX(sortIndex(i), :)*exp(-(i)/(r1*M));

           X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

           fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

       end

   else

       for i = 1:pNum

           X(sortIndex(i), :) = pX(sortIndex(i), :)+randn(1)*ones(1, dim);

           X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

           fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

       end

   end

   

   [~, bestII] = min(fitness);

   bestXX = X(bestII, :);

   

   %% 跟随者位置更新

   for i = (pNum+1):N                     % Equation (4)

       A = floor(rand(1, dim)*2)*2-1;

       if i > N/2

           X(sortIndex(i), :) = randn(1)*exp((worst-pX(sortIndex(i), :))/(i)^2);

       else

           X(sortIndex(i), :) = bestXX+(abs((pX(sortIndex(i), :)-bestXX)))*(A'*(A*A')^(-1))*ones(1, dim);

       end

       X(sortIndex(i), :) = Bounds(X(sortIndex(i), :), lb, ub);

       fitness(sortIndex(i)) = fobj(X(sortIndex(i), :));

   end

   

   %% 警戒者位置更新

   c = randperm(numel(sortIndex));

   b = sortIndex(c(1:SD));

   for j = 1:length(b)      % Equation (5)

       if pFit(sortIndex(b(j))) > fMin

           X(sortIndex(b(j)), :) = bestX+(randn(1, dim)).*(abs((pX(sortIndex(b(j)), :) -bestX)));

       else

           X(sortIndex(b(j)), :) = pX(sortIndex(b(j)), :)+(2*rand(1)-1)*(abs(pX(sortIndex(b(j)), :)-worst))/(pFit(sortIndex(b(j)))-fmax+1e-50);

       end

       X(sortIndex(b(j)), :) = Bounds(X(sortIndex(b(j)), :), lb, ub);

       fitness(sortIndex(b(j))) = fobj(X(sortIndex(b(j)), :));

   end

   

   for i = 1:N

       % 更新个体最优

       if fitness(i) < pFit(i)

           pFit(i) = fitness(i);

           pX(i, :) = X(i, :);

       end

       % 更新全局最优

       if pFit(i) < fMin

           fMin = pFit(i);

           bestX = pX(i, :);

       end

   end

   Convergence_curve(t) = fMin;

   

   disp(['SSA: At iteration ', num2str(t), ' ,the best fitness is ', num2str(fMin)]);

end


%% 边界处理

function s = Bounds(s, Lb, Ub)

% 下界

temp = s;

I = temp < Lb;

temp(I) = Lb(I);


% 上界

J = temp > Ub;

temp(J) = Ub(J);

% 更新

s = temp;

⛄ 运行结果

⛄ 参考文献

[1]李森文, 张伟, 李纯宇,等. 基于SSA-LSTM的海上风电功率预测[J]. 机械与电子, 2022(040-006).

⛳️ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
6月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
6月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
259 2
|
7月前
|
机器学习/深度学习 数据采集 数据挖掘
Python实现循环神经网络RNN-LSTM回归模型项目实战(股票价格预测)
Python实现循环神经网络RNN-LSTM回归模型项目实战(股票价格预测)
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
8月前
|
机器学习/深度学习 数据采集
RNN、LSTM、GRU神经网络构建人名分类器(一)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。

热门文章

最新文章