【pytorch深度学习实践】笔记—05.pytorch实现线性回归

简介: 【pytorch深度学习实践】笔记—05.pytorch实现线性回归

问题与解答

1.已经手动实现了线性回归,为什么要用pytorch来实现线性回归?

pytorch提供许多方法,用起来比较方便。使用pytorch之后我们可以把重点放在神经网络的构建上,而不是python的基础语法上。


pytorch实现线性回归的步骤

1.准备数据集

2.设计模型

理解:究竟要采用什么样的模型来求解线性问题

3.构造loss损失函数和optimizer优化器

4.训练模型

前馈计算loss损失,反馈计算梯度gradient,最后更新权重w

5.预测

最初的目的就是为了预测,希望输入一个x后可以预测输出y的值是多少。所以我们将已知的数据作为训练集、自己设计模型、训练数据,得到一个y和x的关系。最终输入一个x,输出y完成预测。


1.准备数据集

import torch
# 自定义数据集
x_data = torch.tensor([[1.0], [2.0], [3.0]])
y_data = torch.tensor([[2.0], [4.0], [6.0]])

2.设计模型

设计模型的含义:就是要建立哪种模型来实现问题的求解。

一般从最简单的线性模型入手,y=wx或者y=wx+b。

class LinearModel(torch.nn.Module):
    def __init__(self):
        # __init__是构造函数
        # super函数继承父类的__init__()方法
        super(LinearModel, self).__init__()
        # torch.nn.Linear(m, n)表示输入的x是m维的,输出的y是n维的
        self.linear = torch.nn.Linear(1, 1)
    def forward(self, x):
        # forward定义前馈需要进行哪些计算
        y_pred = self.linear(x)  # liear()是对y_pred做计算 y_pred=wx+b
        return y_pred
model = LinearModel()  # 实例化类,创建一个线性模型。

【注】torch.nn.Linear(in_features, out_features, bias=True)

文档中标注:Applies a linear transformation to the incoming data:y=Ax+b 。

传参in_features表示输入x的维度,传参out_features表示输出y的维度。


3.定义损失函数和优化器

criterion = torch.nn.MSELoss(size_average=False)  # 定义损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 定义优化器,lr指的学习率=0.01

4.训练

for epoch in range(10):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # 自动反向传播
    optimizer.step()  # 更新权重
# 最后打印经过训练之后得到的w和b的值
print("w=", model.linear.weight.item())
print("b=", model.linear.bias.item())

5.预测

我们之所以要构建模型,进行训练,最终的目的是为了预测。所以输入任意x的值,调用model类,预测y的值并输出。

x_test = torch.tensor([[4.0]])
y_test = model(x_test)
print('y_pred=', y_test.data.item())
目录
相关文章
|
21天前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
66 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
21天前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
43 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
21天前
|
机器学习/深度学习
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
32 2
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
|
21天前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
56 1
深度学习环境搭建笔记(一):detectron2安装过程
|
21天前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
98 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
21天前
|
机器学习/深度学习 自然语言处理 并行计算
深度学习笔记(十四):Transormer知识总结
关于深度学习中Transformer模型的知识总结,涵盖了Self-attention机制、QKV、Multi-head attention、位置编码和并行运算等关键概念,以及如何在PyTorch中实现Self-attention。
42 1
|
3天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
34 8
|
2天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
本文探讨了深度学习在图像识别领域的应用现状,分析了其面临的主要技术挑战和解决方案。通过对比传统方法和深度学习模型的优势,揭示了深度学习如何推动图像识别技术的发展,并展望了未来的研究方向。
|
6天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第22天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术原理、优势以及面临的挑战。通过实例展示了深度学习如何推动图像识别技术的发展,并对未来趋势进行了展望。
20 5
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第20天】 随着人工智能技术的不断发展,深度学习已经在许多领域展现出强大的应用潜力。本文将探讨深度学习在图像识别领域的应用,以及面临的挑战和可能的解决方案。通过分析现有的研究成果和技术趋势,我们可以更好地理解深度学习在图像识别中的潜力和局限性,为未来的研究和应用提供参考。
33 7