【pytorch深度学习实践】笔记—05.pytorch实现线性回归

简介: 【pytorch深度学习实践】笔记—05.pytorch实现线性回归

问题与解答

1.已经手动实现了线性回归,为什么要用pytorch来实现线性回归?

pytorch提供许多方法,用起来比较方便。使用pytorch之后我们可以把重点放在神经网络的构建上,而不是python的基础语法上。


pytorch实现线性回归的步骤

1.准备数据集

2.设计模型

理解:究竟要采用什么样的模型来求解线性问题

3.构造loss损失函数和optimizer优化器

4.训练模型

前馈计算loss损失,反馈计算梯度gradient,最后更新权重w

5.预测

最初的目的就是为了预测,希望输入一个x后可以预测输出y的值是多少。所以我们将已知的数据作为训练集、自己设计模型、训练数据,得到一个y和x的关系。最终输入一个x,输出y完成预测。


1.准备数据集

import torch
# 自定义数据集
x_data = torch.tensor([[1.0], [2.0], [3.0]])
y_data = torch.tensor([[2.0], [4.0], [6.0]])

2.设计模型

设计模型的含义:就是要建立哪种模型来实现问题的求解。

一般从最简单的线性模型入手,y=wx或者y=wx+b。

class LinearModel(torch.nn.Module):
    def __init__(self):
        # __init__是构造函数
        # super函数继承父类的__init__()方法
        super(LinearModel, self).__init__()
        # torch.nn.Linear(m, n)表示输入的x是m维的,输出的y是n维的
        self.linear = torch.nn.Linear(1, 1)
    def forward(self, x):
        # forward定义前馈需要进行哪些计算
        y_pred = self.linear(x)  # liear()是对y_pred做计算 y_pred=wx+b
        return y_pred
model = LinearModel()  # 实例化类,创建一个线性模型。

【注】torch.nn.Linear(in_features, out_features, bias=True)

文档中标注:Applies a linear transformation to the incoming data:y=Ax+b 。

传参in_features表示输入x的维度,传参out_features表示输出y的维度。


3.定义损失函数和优化器

criterion = torch.nn.MSELoss(size_average=False)  # 定义损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 定义优化器,lr指的学习率=0.01

4.训练

for epoch in range(10):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # 自动反向传播
    optimizer.step()  # 更新权重
# 最后打印经过训练之后得到的w和b的值
print("w=", model.linear.weight.item())
print("b=", model.linear.bias.item())

5.预测

我们之所以要构建模型,进行训练,最终的目的是为了预测。所以输入任意x的值,调用model类,预测y的值并输出。

x_test = torch.tensor([[4.0]])
y_test = model(x_test)
print('y_pred=', y_test.data.item())
目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度理解深度学习:从理论到实践的探索
【5月更文挑战第3天】 在人工智能的浪潮中,深度学习以其卓越的性能和广泛的应用成为了研究的热点。本文将深入探讨深度学习的核心理论,解析其背后的数学原理,并通过实际案例分析如何将这些理论应用于解决现实世界的问题。我们将从神经网络的基础结构出发,逐步过渡到复杂的模型架构,同时讨论优化算法和正则化技巧。通过本文,读者将对深度学习有一个全面而深刻的认识,并能够在实践中更加得心应手地应用这些技术。
|
8天前
|
机器学习/深度学习 PyTorch API
pytorch与深度学习
【5月更文挑战第3天】PyTorch,Facebook开源的深度学习框架,以其动态计算图和灵活API深受青睐。本文深入浅出地介绍PyTorch基础,包括动态计算图、张量和自动微分,通过代码示例演示简单线性回归和卷积神经网络的实现。此外,探讨了模型架构、自定义层、数据加载及预处理等进阶概念,并分享了实战技巧、问题解决方案和学习资源,助力读者快速掌握PyTorch。
31 5
|
11天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【Python机器学习专栏】PyTorch在深度学习中的应用
【4月更文挑战第30天】PyTorch是流行的开源深度学习框架,基于动态计算图,易于使用且灵活。它支持张量操作、自动求导、优化器和神经网络模块,适合快速实验和模型训练。PyTorch的优势在于易用性、灵活性、社区支持和高性能(利用GPU加速)。通过Python示例展示了如何构建和训练神经网络。作为一个强大且不断发展的工具,PyTorch适用于各种深度学习任务。
|
11天前
|
机器学习/深度学习 人工智能 缓存
安卓应用性能优化实践探索深度学习在图像识别中的应用进展
【4月更文挑战第30天】随着智能手机的普及,移动应用已成为用户日常生活的重要组成部分。对于安卓开发者而言,确保应用流畅、高效地运行在多样化的硬件上是一大挑战。本文将探讨针对安卓平台进行应用性能优化的策略和技巧,包括内存管理、多线程处理、UI渲染效率提升以及电池使用优化,旨在帮助开发者构建更加健壮、响应迅速的安卓应用。 【4月更文挑战第30天】 随着人工智能技术的迅猛发展,深度学习已成为推动计算机视觉领域革新的核心动力。本篇文章将深入分析深度学习技术在图像识别任务中的最新应用进展,并探讨其面临的挑战与未来发展趋势。通过梳理卷积神经网络(CNN)的优化策略、转移学习的实践应用以及增强学习与生成对
|
11天前
|
机器学习/深度学习 自然语言处理 算法
PyTorch与NLP:自然语言处理的深度学习实战
随着人工智能技术的快速发展,自然语言处理(NLP)作为其中的重要分支,日益受到人们的关注。PyTorch作为一款强大的深度学习框架,为NLP研究者提供了强大的工具。本文将介绍如何使用PyTorch进行自然语言处理的深度学习实践,包括基础概念、模型搭建、数据处理和实际应用等方面。
|
23天前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与CUDA:加速深度学习训练
【4月更文挑战第18天】本文介绍了如何使用PyTorch与CUDA加速深度学习训练。CUDA是NVIDIA的并行计算平台,常用于加速深度学习中的矩阵运算。PyTorch与CUDA集成,允许开发者将模型和数据迁移到GPU,利用`.to(device)`方法加速计算。通过批处理、并行化策略及优化技巧,如混合精度训练,可进一步提升训练效率。监控GPU内存和使用调试工具确保训练稳定性。PyTorch与CUDA的结合对深度学习训练的加速作用显著。
|
PyTorch 算法框架/工具 Android开发
PyTorch 深度学习(GPT 重译)(六)(4)
PyTorch 深度学习(GPT 重译)(六)
38 2
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 深度学习(GPT 重译)(六)(3)
PyTorch 深度学习(GPT 重译)(六)
29 2
|
3月前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
2月前
|
机器学习/深度学习 算法 PyTorch
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
84 2