基于神经网络识别抑郁症附matlab代码

简介: 基于神经网络识别抑郁症附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

在如今生活节奏快,工作竞争激烈的社会环境的影响下,抑郁症已成为人群中一种常见的精神疾病,并成为了全球性公共卫生问题.对抑郁症进行准确的诊断以及预测病情能否通过药物有效控制(不同类型细分),对于确定合适的诊疗方案具有重要的意义.但是,目前临床上对抑郁症的诊断方式主要是通过对患者进行量表问询.该方式下患者回答的真实性有待考量且受医生经验和水平等因素的影响,诊断结果较为主观且易发生误诊的情况.近年来,已有大量的研究从大脑医学影像的角度寻找抑郁症的生物学诊断指标

⛄ 部分代码

% @=============================================================================

% Reference: Identifying Neuroimaging Biomarkers of Major Depressive Disorder

%            from Cortical Hemodynamic Responses

%            Using Machine Learning Approaches

% =============================================================================@

%

function main()

   clc; clear; close all;

   

   % Add current path and all subfolders to the path.

   addpath(genpath(pwd));

   

   % -----------------------------------------------------------------

   % Pre-processed NIRS signals by: linear fitting, moving average, and

   %   removing artifact channels.

   % The generated ∆HbO dataset:

   %   samples_52ch_HbO.mat

   

   

   % -----------------------------------------------------------------

   % Three steps of fNRIS signals analysis for differing MDDs from HCs

   step = 3;

   

   if step == 1

       Method1_RankingFeatures();

       

   elseif step == 2

       Method2_GASelection();

       

   elseif step == 3

       Validation();

       

   end

   

end




%% ===================================================================

% Feature Selection Method I: Ranking Features by Statistical Test

%

function Method1_RankingFeatures()

   %   (1) A data matrix consists of 52 channels × 16 variables was extracted.

   %   (2) Statistical test was applied to find the significantly different

   %       channels on each variable, and subsequently generate feature channels

   %       as predictors for a classifier.

   stat_result = statistics_test_feature();

   % Results:

   %           Supplementary Figure 1 - Color Map

   %           Supplementary Figure 2 - count_sigdiff_channels

   %           Supplementary Table 3 - hc_cf_mstd, mdd_cf_mstd, pvalues_cluster

   

   

%     % generate feature set with significant difference

%     generate_sigdiff_feature(stat_result.feature_names, ...

%                               stat_result.diff_feature_cluster, ...

%                               stat_result.count_sigdiff_channels);

   


   %   (3) Five supervised models were implemented to learn pattern

   %       from feature channels

   %   (6)(10) Performances were evaluated by five-fold cross-validation and

   %       prediction accuracy

   data_type       = 'sigdiff_feature_topsigch';   % 'sigdiff_feature_topcluster'

   feature_type    = 'feature_channel';

   feature_fname   = 'featureset_sigdiff_5ch.mat';

   integral_type   = '';

   centroid_type   = '';

   model_type      = 'funcfit_nb';

   [pred_train, pred_test] = test_feature_performance(data_type, ...

                               feature_type, feature_fname, ...

                               integral_type, centroid_type, ...

                               model_type);

   % Result: Supplementary Table 6

   

   %   (10) performances were estimated by nested cross-validation

   [result_inner_cv, result_outer_train, result_outer_test] =      ...

                             nested_crossvalidation(data_type,     ...

                               feature_type, feature_fname,        ...

                               '', '', model_type);

   % Result: Supplementary Table 6

end



%% ===================================================================

% Feature Selection Method II: Two-phase Feature Selection by Genetic Algorithm

%    

function Method2_GASelection()

   % -------------- Phase-One --------------

   % The input is the candidate channels from one of the 10 significant variables,

   % while the output is a channel subset of the specific variable.

   % The optimization of channel selection was performed over all 10 variables.

   data_type       = 'integral';

   feature_type    = 'feature_channel';

   feature_fname   = '';

   integral_type   = 'integral_stim';

   centroid_type   = '';

   model_type      = 'funcfit_svm';

   func_pop        = @func_population_rand;

   binary_ga(data_type, feature_type, feature_fname, ...

               integral_type, centroid_type, model_type, func_pop);

   % Result: ga_ma50_integral_stim__svm_0.7316_0.7363.mat, etc.

   

   % -------------- Phase-Two --------------

   % The selected channel subsets from 10 significant variables were then

   % combined into a feature set, i.e., fusion features.

   generate_fusion_feature('svm');

   % Result: fusion_10variants_svm.mat, etc.

   

   % GA learned which feature channels contributed best to the accuracy

   % of a supervised model.

   data_type       = 'fusion_feature';

   feature_type    = 'feature_channel';

   feature_fname   = 'fusion_10variants_svm.mat';

   model_type      = 'funcfit_svm';

   func_pop        = @func_population_optm;

   binary_ga(data_type, feature_type, feature_fname, ...

                '', '', model_type, func_pop);

   % Results:  

   %           ga_fusion_features_svm_0.8053_0.7802.mat, etc.

   %           Supplementary Figure 3

end



%% ===================================================================

% Validate the Performance of Optimal Features

%

function Validation()

   % -----------------------------------------------------------------

   % Classification performances were reported by the

   % 5-fold cross-validation in training set and

   % prediction accuracy in test set.

   data_type       = 'ga_optimal_feature';

   feature_type    = 'feature_channel';

   feature_fname   = 'ga_fusion_features_svm_0.8053_0.7802.mat';

   model_type      = 'funcfit_svm';

   [pred_train, pred_test] = test_feature_performance(data_type,   ...

                               feature_type, feature_fname,        ...

                               '', '', model_type);

   % Result: TABLE 1 of main text

   

   % ----------------------------------------------------------------------

   % Classification performances were estimated by nested cross-validation

   [result_inner_cv, result_outer_train, result_outer_test] =      ...

                             nested_crossvalidation(data_type,     ...

                               feature_type, feature_fname,        ...

                               '', '', model_type);

   % Result: TABLE 1 of main text

   

   

   % -------------- Characteristics of optimal feature --------------

   p1_fus_feature_fname = 'fusion_10variants_svm.mat';

   p2_opt_feature_fname = 'ga_fusion_features_svm_0.8053_0.7802.mat';

   [pvalues_optfeatures, pvalues_roifeatures, ...

           hc_roi, mdd_roi, count_common_channels] = ...

       test_optimalfeature(p1_fus_feature_fname, p2_opt_feature_fname);

   % Results:

   %           Figure 2 of main text -- hc_roi, mdd_roi

   %           Figure 3 of main text -- count_common_channels

   %           Supplementary Table 4 -- hc_roi, mdd_roi, pvalues_roifeatures

   

   

   % -------------- Common features between different models --------------

%     test_common_features();

end

⛄ 运行结果

⛄ 参考文献

[1]江筱, 邵珠宏, 尚媛园,等. 基于级联深度神经网络的抑郁症识别[J]. 计算机应用与软件, 2019, 36(10):7.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
8天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
8天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
87 14
|
8天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
|
8天前
|
机器学习/深度学习 传感器 算法
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
|
8天前
|
存储 算法 安全
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
【多目标工程应用】基于MOGWO的地铁隧道上方基坑工程优化设计研究(Matlab代码实现)
|
8天前
|
传感器 机器学习/深度学习 编解码
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
|
8天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
|
9天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
9天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)