九、DataStream API(小白入门章节)
DataStream API是Flink的核心层API。一个Flink程序,其实就是对DataStream的各种转换。具体来说,代码基本上都由以下几部分构成。
获取执行环境(execution environment) 读取数据源(source) 定义基于数据的转换操作(transformations) 定义计算结果的输出位置(sink) 触发程序执行(execute)
其中,获取环境和触发执行,都可以认为是针对执行环境的操作。所以我们就从执行环境、数据源(source)、转换操作(transformation)、输出(sink)四大部分,对常用的DataStream API做基本介绍。
9.1 执行环境(Execution Environment)
Flink程序可以在各种上下文环境中运行:我们可以在本地JVM中执行程序,也可以提交到远程集群上运行。
不同的环境,代码的提交运行的过程会有所不同。这就要求我们在提交作业执行计算时,首先必须获取当前Flink的运行环境,从而建立起与Flink框架之间的联系。只有获取了环境上下文信息,才能将具体的任务调度到不同的TaskManager执行。
9.1.1 创建执行环境
编写Flink程序的第一步,就是创建执行环境。我们要获取的执行环境,是StreamExecutionEnvironment类的对象,这是所有Flink程序的基础。在代码中创建执行环境的方式,就是调用这个类的静态方法,具体有以下三种。
- getExecutionEnvironment
最简单的方式,就是直接调用getExecutionEnvironment方法。它会根据当前运行的上下文直接得到正确的结果:如果程序是独立运行的,就返回一个本地执行环境;如果是创建了jar包,然后从命令行调用它并提交到集群执行,那么就返回集群的执行环境。也就是说,这个方法会根据当前运行的方式,自行决定该返回什么样的运行环境。
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
这种“智能”的方式不需要我们额外做判断,用起来简单高效,是最常用的一种创建执行环境的方式。
- createLocalEnvironment
这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果不传入,则默认并行度就是本地的CPU核心数。
StreamExecutionEnvironment localEnv = StreamExecutionEnvironment.createLocalEnvironment();
- createRemoteEnvironment
这个方法返回集群执行环境。需要在调用时指定JobManager的主机名和端口号,并指定要在集群中运行的Jar包。
StreamExecutionEnvironment remoteEnv = StreamExecutionEnvironment .createRemoteEnvironment( "host", // JobManager主机名 1234, // JobManager进程端口号 "path/to/jarFile.jar"// 提交给JobManager的JAR包 );
在获取到程序执行环境后,我们还可以对执行环境进行灵活的设置。比如可以全局设置程序的并行度、禁用算子链,还可以定义程序的时间语义、配置容错机制。
9.1.2 执行模式(Execution Mode)
上节中我们获取到的执行环境,是一个StreamExecutionEnvironment,顾名思义它应该是做流处理的。那对于批处理,又应该怎么获取执行环境呢?
在之前的Flink版本中,批处理的执行环境与流处理类似,是调用类ExecutionEnvironment的静态方法,返回它的对象:
// 批处理环境 ExecutionEnvironment batchEnv = ExecutionEnvironment.getExecutionEnvironment(); // 流处理环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
基于ExecutionEnvironment读入数据创建的数据集合,就是DataSet;对应的调用的一整套转换方法,就是DataSet API。这些我们在第二章的批处理word count程序中已经有了基本了解。
而从1.12.0版本起,Flink实现了API上的流批统一。DataStream API新增了一个重要特性:可以支持不同的“执行模式”(execution mode),通过简单的设置就可以让一段Flink程序在流处理和批处理之间切换。这样一来,DataSet API也就没有存在的必要了。
- 流执行模式(STREAMING)
“这是DataStream API最经典的模式,一般用于需要持续实时处理的无界数据流。默认情况下,程序使用的就是STREAMING执行模式。
”
- 批执行模式(BATCH)
“专门用于批处理的执行模式, 这种模式下,Flink处理作业的方式类似于MapReduce框架。对于不会持续计算的有界数据,我们用这种模式处理会更方便。
”
- 自动模式(AUTOMATIC)
在这种模式下,将由程序根据输入数据源是否有界,来自动选择执行模式。
由于Flink程序默认是STREAMING模式,我们这里重点介绍一下BATCH模式的配置。主要有两种方式:
- 通过命令行配置
bin/flink run -Dexecution.runtime-mode=BATCH ... 在提交作业时,增加execution.runtime-mode参数,指定值为BATCH。
- 通过代码配置
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setRuntimeMode(RuntimeExecutionMode.BATCH);
在代码中,直接基于执行环境调用setRuntimeMode方法,传入BATCH模式。
实际应用中一般不会在代码中配置,而是使用命令行。这同设置并行度是类似的:在提交作业时指定参数可以更加灵活,同一段应用程序写好之后,既可以用于批处理也可以用于流处理。而在代码中硬编码(hard code)的方式可扩展性比较差,一般都不推荐。
9.1.3 触发程序执行
有了执行环境,我们就可以构建程序的处理流程了:基于环境读取数据源,进而进行各种转换操作,最后输出结果到外部系统。
需要注意的是,写完输出(sink)操作并不代表程序已经结束。因为当main()方法被调用时,其实只是定义了作业的每个执行操作,然后添加到数据流图中;这时并没有真正处理数据——因为数据可能还没来。Flink是由事件驱动的,只有等到数据到来,才会触发真正的计算,这也被称为“延迟执行”或“懒执行”(lazy execution)。
所以我们需要显式地调用执行环境的execute()方法,来触发程序执行。execute()方法将一直等待作业完成,然后返回一个执行结果(JobExecutionResult)。
env.execute();
9.2 源算子(Source)
创建环境之后,就可以构建数据处理的业务逻辑了,如图5-2所示,本节将主要讲解Flink的源算子(Source)。想要处理数据,先得有数据,所以首要任务就是把数据读进来。
Flink可以从各种来源获取数据,然后构建DataStream进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。
Flink代码中通用的添加source的方式,是调用执行环境的addSource()方法:
DataStream<String> stream = env.addSource(...);
方法传入的参数是一个“源函数”(source function),需要实现SourceFunction接口。Flink直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的source function,通常情况下足以应对我们的实际需求。
9.2.1 准备工作
为了更好地理解,我们先构建一个实际应用场景。比如网站的访问操作,可以抽象成一个三元组(用户名,用户访问的url,用户访问url的时间戳),所以在这里,我们可以创建一个类Event,将用户行为包装成它的一个对象。Event包含了以下一些字段,如表所示:
Event类字段设计
字段名 | 数据类型 | 说明 |
user | String | 用户名 |
url | String | 用户访问的url |
timestamp | Long | 用户访问url的时间戳 |
具体代码如下:
import java.sql.Timestamp; publicclass Event { public String user; public String url; public Long timestamp; public Event() { } public Event(String user, String url, Long timestamp) { this.user = user; this.url = url; this.timestamp = timestamp; } @Override public String toString() { return"Event{" + "user='" + user + '\'' + ", url='" + url + '\'' + ", timestamp=" + new Timestamp(timestamp) + '}'; } }
这里需要注意,我们定义的Event,有这样几个特点:
类是公有(public)的 有一个无参的构造方法 所有属性都是公有(public)的 所有属性的类型都是可以序列化的
Flink会把这样的类作为一种特殊的POJO数据类型来对待,方便数据的解析和序列化。另外我们在类中还重写了toString方法,主要是为了测试输出显示更清晰。
我们这里自定义的Event POJO类会在后面的代码中频繁使用,所以在后面的代码中碰到Event,把这里的POJO类导入就好了。
9.2.2 从集合中读取数据
最简单的读取数据的方式,就是在代码中直接创建一个Java集合,然后调用执行环境的fromCollection方法进行读取。这相当于将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用,一般用于测试。
public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); ArrayList<Event> clicks = new ArrayList<>(); clicks.add(new Event("Mary","./home",1000L)); clicks.add(new Event("Bob","./cart",2000L)); DataStream<Event> stream = env.fromCollection(clicks); stream.print(); env.execute(); }
我们也可以不构建集合,直接将元素列举出来,调用fromElements方法进行读取数据:
DataStreamSource<Event> stream2 = env.fromElements( new Event("Mary", "./home", 1000L), new Event("Bob", "./cart", 2000L) );
9.2.3 从文件读取数据
真正的实际应用中,自然不会直接将数据写在代码中。通常情况下,我们会从存储介质中获取数据,一个比较常见的方式就是读取日志文件。这也是批处理中最常见的读取方式。
DataStream<String> stream = env.readTextFile("clicks.csv");
说明:
参数可以是目录,也可以是文件;还可以从hdfs目录下读取,使用路径hdfs://...; 路径可以是相对路径,也可以是绝对路径; 相对路径是从系统属性user.dir获取路径: idea下是project的根目录, standalone模式下是集群节点根目录;
9.2.4 从Socket读取数据
不论从集合还是文件,我们读取的其实都是有界数据。在流处理的场景中,数据往往是无界的。
一个简单的方式,就是我们之前用到的读取socket文本流。这种方式由于吞吐量小、稳定性较差,一般也是用于测试。
DataStream<String> stream = env.socketTextStream("localhost", 7777);
9.2.5 从Kafka读取数据
Flink官方提供了连接工具flink-connector-kafka,直接帮我们实现了一个消费者FlinkKafkaConsumer,它就是用来读取Kafka数据的SourceFunction。
所以想要以Kafka作为数据源获取数据,我们只需要引入Kafka连接器的依赖。Flink官方提供的是一个通用的Kafka连接器,它会自动跟踪最新版本的Kafka客户端。目前最新版本只支持0.10.0版本以上的Kafka。这里我们需要导入的依赖如下。
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency>
然后调用env.addSource(),传入FlinkKafkaConsumer的对象实例就可以了。
publicclass SourceKafka { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "hadoop102:9092"); properties.setProperty("group.id", "consumer-group"); properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.setProperty("auto.offset.reset", "latest"); DataStreamSource<String> stream = env.addSource(new FlinkKafkaConsumer<String>( "clicks", new SimpleStringSchema(), properties )); stream.print("Kafka"); env.execute(); } }
创建FlinkKafkaConsumer时需要传入三个参数:
第一个参数topic,定义了从哪些主题中读取数据。可以是一个topic,也可以是topic列表,还可以是匹配所有想要读取的topic的正则表达式。当从多个topic中读取数据时,Kafka连接器将会处理所有topic的分区,将这些分区的数据放到一条流中去。 第二个参数是一个DeserializationSchema或者KeyedDeserializationSchema。Kafka消息被存储为原始的字节数据,所以需要反序列化成Java或者Scala对象。上面代码中使用的SimpleStringSchema,是一个内置的DeserializationSchema,它只是将字节数组简单地反序列化成字符串。DeserializationSchema和KeyedDeserializationSchema是公共接口,所以我们也可以自定义反序列化逻辑。 第三个参数是一个Properties对象,设置了Kafka客户端的一些属性。
9.2.6 自定义Source
接下来我们创建一个自定义的数据源,实现SourceFunction接口。主要重写两个关键方法:run()和cancel()。
run()方法:通过运行时上下文对象SourcContext循环生成数据,并发送到流中; cancel()方法:通过标识位控制退出循环,来达到中断数据源的效果。
代码如下:
publicclass ClickSource implements SourceFunction<Event> { private Boolean running = true; @Override public void run(SourceContext<Event> sourceContext) throws Exception { Random random = new Random(); String[] users = {"Mary", "Bob"}; String[] urls = {"./home", "./cart", “./fav”, “./prod?id=1”, “./prod?id=2”}; while (running) { sourceContext.collect(new Event( users[random.nextInt(users.length)], urls[random.nextInt(urls.length)], Calendar.getInstance().getTimeInMillis() )); } } @Override public void cancel() { running = false; } }
这个数据源,我们后面会频繁使用,所以在后面的代码中涉及到ClickSource()数据源,使用上面的代码就可以了。
下面的代码我们来读取一下自定义的数据源。有了自定义的source function,接下来只要调用addSource()就可以了:
env.addSource(new ClickSource())
下面是完整的代码:
publicclass SourceCustom { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); //有了自定义的source function,调用addSource方法 DataStreamSource<Event> stream = env.addSource(new ClickSource()); stream.print("SourceCustom"); env.execute(); } }
9.2.7 Flink支持的数据类型
- Flink的类型系统
为了方便地处理数据,Flink有自己一整套类型系统。Flink使用“类型信息”(TypeInformation)来统一表示数据类型。TypeInformation类是Flink中所有类型描述符的基类。它涵盖了类型的一些基本属性,并为每个数据类型生成特定的序列化器、反序列化器和比较器。
- Flink支持的数据类型
简单来说,对于常见的Java和Scala数据类型,Flink都是支持的。Flink在内部,Flink对支持不同的类型进行了划分,这些类型可以在Types工具类中找到:
- 基本类型
“所有Java基本类型及其包装类,再加上Void、String、Date、BigDecimal和BigInteger。
”
- 数组类型
“包括基本类型数组(PRIMITIVE_ARRAY)和对象数组(OBJECT_ARRAY)
”
- 复合数据类型
Java元组类型(TUPLE):这是Flink内置的元组类型,是Java API的一部分。最多25个字段,也就是从Tuple0~Tuple25,不支持空字段 Scala 样例类及Scala元组:不支持空字段 行类型(ROW):可以认为是具有任意个字段的元组,并支持空字段 POJO:Flink自定义的类似于Java bean模式的类
- 辅助类型
“Option、Either、List、Map等
”
- 泛型类型(GENERIC)
Flink支持所有的Java类和Scala类。不过如果没有按照上面POJO类型的要求来定义,就会被Flink当作泛型类来处理。Flink会把泛型类型当作黑盒,无法获取它们内部的属性;它们也不是由Flink本身序列化的,而是由Kryo序列化的。 在这些类型中,元组类型和POJO类型最为灵活,因为它们支持创建复杂类型。而相比之下,POJO还支持在键(key)的定义中直接使用字段名,这会让我们的代码可读性大大增加。所以,在项目实践中,往往会将流处理程序中的元素类型定为Flink的POJO类型。
Flink对POJO类型的要求如下:
类是公共的(public)和独立的(standalone,也就是说没有非静态的内部类); 类有一个公共的无参构造方法; 类中的所有字段是public且非final的;或者有一个公共的getter和setter方法,这些方法需要符合Java bean的命名规范。 所以我们看到,之前的UserBehavior,就是我们创建的符合Flink POJO定义的数据类型。
- 类型提示(Type Hints)Flink还具有一个类型提取系统,可以分析函数的输入和返回类型,自动获取类型信息,从而获得对应的序列化器和反序列化器。但是,由于Java中泛型擦除的存在,在某些特殊情况下(比如Lambda表达式中),自动提取的信息是不够精细的——只告诉Flink当前的元素由“船头、船身、船尾”构成,根本无法重建出“大船”的模样;这时就需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。
为了解决这类问题,Java API提供了专门的“类型提示”(type hints)。
回忆一下之前的word count流处理程序,我们在将String类型的每个词转换成(word, count)二元组后,就明确地用returns指定了返回的类型。因为对于map里传入的Lambda表达式,系统只能推断出返回的是Tuple2类型,而无法得到Tuple2<String, Long>。只有显式地告诉系统当前的返回类型,才能正确地解析出完整数据。
.map(word -> Tuple2.of(word, 1L)) .returns(Types.TUPLE(Types.STRING, Types.LONG));
Flink还专门提供了TypeHint类,它可以捕获泛型的类型信息,并且一直记录下来,为运行时提供足够的信息。我们同样可以通过.returns()方法,明确地指定转换之后的DataStream里元素的类型。
returns(new TypeHint<Tuple2<Integer, SomeType>>(){})
9.3 转换算子(Transformation)
数据源读入数据之后,我们就可以使用各种转换算子,将一个或多个DataStream转换为新的DataStream。一个Flink程序的核心,其实就是所有的转换操作,它们决定了处理的业务逻辑。
我们可以针对一条流进行转换处理,也可以进行分流、合流等多流转换操作,从而组合成复杂的数据流拓扑。在本节中,我们将重点介绍基本的单数据流的转换,多流转换的内容我们将在后续章节展开。