[尚硅谷flink学习笔记] 实战案例TopN 问题

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 这段内容是关于如何使用Apache Flink解决实时统计水位传感器数据中,在一定时间窗口内出现次数最多的水位问题,即"Top N"问题。首先,介绍了一个使用滑动窗口的简单实现,通过收集传感器数据,按照水位计数,然后排序并输出前两名。接着,提出了全窗口和优化方案,其中优化包括按键分区(按水位vc分组)、开窗操作(增量聚合计算count)和过程函数处理(聚合并排序输出Top N结果)。最后,给出了一个使用`KeyedProcessFunction`进行优化的示例代码,通过按键by窗口结束时间,确保每个窗口的所有数据到达后再进行处理,提高了效率。

实时统计一段时间内的出现次数最多的水位。* 例如,统计最近10秒钟内出现次数最多的两个水位,并且每5秒钟更新一次。* 我们知道,这可以用一个滑动窗口来实现。于是就需要开滑动窗口收集传感器的数据,按照不同的水位进行统计,而后汇总排序并最终输出前两名。这其实就是著名的“Top N”问题。

全窗口
package org.example.process;

...
public class TopNDemo {


    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        /**
         * 实时统计一段时间内的出现次数最多的水位。
         * 例如,统计最近10秒钟内出现次数最多的两个水位,并且每5秒钟更新一次。
         * 我们知道,这可以用一个滑动窗口来实现。于是就需要开滑动窗口收集传感器的数据,按照不同的水位进行统计,而后汇总排序并最终输出前两名。这其实就是著名的“Top N”问题。
         */
        SingleOutputStreamOperator<WaterSensor> sensorDS = env
            .socketTextStream("localhost", 7777)
            .map(new WaterSensorMapFunction())
            .assignTimestampsAndWatermarks(
                WatermarkStrategy.<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                    .withTimestampAssigner(new SerializableTimestampAssigner<WaterSensor>() {
                        @Override
                        public long extractTimestamp(WaterSensor waterSensor, long l) {
                            return waterSensor.getTs() * 1000;
                        }
                    }));

        /**
         * 最近10s=窗口长度 每5s输出=滑动步长
         * 思路一:使用hashmap存储数据
         */
        sensorDS.windowAll(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
                .process(new ProcessAllWindowFunction<WaterSensor, String, TimeWindow>() {
                    @Override
                    public void process(ProcessAllWindowFunction<WaterSensor, String, TimeWindow>.Context context, Iterable<WaterSensor> elements, Collector<String> collector) throws Exception {
                        HashMap<Integer, Integer> vcCounter = new HashMap<>();
                        elements.forEach(r->{
                            Integer vc = r.getVc();
                            vcCounter.put(vc, vcCounter.getOrDefault(vc, 0) +1);
                        });
                        // 使用 list 进行排序
                        ArrayList<Tuple2<Integer, Integer>> data = new ArrayList<>();
                        vcCounter.forEach((k,v)->data.add(Tuple2.of(k,v)));
                        // 降序
                        data.sort(((o1, o2) -> o2.f1 - o1.f1));
                        // 输出
                        StringBuilder stringBuilder = new StringBuilder();
                        for (int i = 0; i < Math.min(2, data.size()); i++) {
                            Tuple2<Integer, Integer> tuple2 = data.get(i);
                            stringBuilder.append("TOP").append(i+1)
                                .append(",")
                                .append("vc=").append(tuple2.f0)
                                .append(",count=").append(tuple2.f1)
                                .append("\r\n");
                        }
                        stringBuilder.append("窗口结束时间=")
                            .append(DateFormatUtils.format(context.window().getEnd(), "yyyy-MM-dd hh:mm:ss.SSS"))
                            .append("================")
                            .append("\r\n");
                        collector.collect(stringBuilder.toString());

                    }
                })
                    .print();

        env.execute();
    }

}

优化
在上一小节的实现过程中,我们没有进行按键分区,直接将所有数据放在一个分区上进行了开窗操作。这相当于将并行度强行设置为1,在实际应用中是要尽量避免的,所以Flink官方也并不推荐使用AllWindowedStream进行处理。另外,我们在全窗口函数中定义了HashMap来统计vc的出现次数,计算过程是要先收集齐所有数据、然后再逐一遍历更新HashMap,这显然不够高效。

基于这样的想法,我们可以从两个方面去做优化:一是对数据进行按键分区,分别统计vc的出现次数;二是进行增量聚合,得到结果最后再做排序输出。所以,我们可以使用增量聚合函数AggregateFunction进行浏览量的统计,然后结合ProcessWindowFunction排序输出来实现Top N的需求。

具体实现可以分成两步:先对每个vc统计出现次数,然后再将统计结果收集起来,排序输出最终结果。由于最后的排序还是基于每个时间窗口的,输出的统计结果中要包含窗口信息,我们可以输出包含了vc、出现次数(count)以及窗口结束时间的Tuple3。之后先按窗口结束时间分区,然后用KeyedProcessFunction来实现。

用KeyedProcessFunction来收集数据做排序,这时面对的是窗口聚合之后的数据流,而窗口已经不存在了;我们需要确保能够收集齐所有数据,所以应该在窗口结束时间基础上再“多等一会儿”。具体实现上,可以采用一个延迟触发的事件时间定时器。基于窗口的结束时间来设定延迟,其实并不需要等太久——因为我们是靠水位线的推进来触发定时器,而水位线的含义就是“之前的数据都到齐了”。所以我们只需要设置1毫秒的延迟,就一定可以保证这一点。

而在等待过程中,之前已经到达的数据应该缓存起来,我们这里用一个自定义的HashMap来进行存储,key为窗口的标记,value为List。之后每来一条数据,就把它添加到当前的HashMap中,并注册一个触发时间为窗口结束时间加1毫秒(windowEnd + 1)的定时器。待到水位线到达这个时间,定时器触发,我们可以保证当前窗口所有vc的统计结果Tuple3

package org.example.process;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import org.example.bean.WaterSensor;
import org.example.utils.WaterSensorMapFunction;

import java.time.Duration;
import java.util.*;

public class KeyedProcessFunctionTopNDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);


        SingleOutputStreamOperator<WaterSensor> sensorDS = env
            .socketTextStream("localhost", 7777)
            .map(new WaterSensorMapFunction())
            .assignTimestampsAndWatermarks(
                WatermarkStrategy
                    .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3))
                    .withTimestampAssigner((element, ts) -> element.getTs() * 1000L)
            );


        // 最近10秒= 窗口长度, 每5秒输出 = 滑动步长
        /**
         * TODO 思路二: 使用 KeyedProcessFunction实现
         * 1、按照vc做keyby,开窗,分别count
         *    ==》 增量聚合,计算 count
         *    ==》 全窗口,对计算结果 count值封装 ,  带上 窗口结束时间的 标签
         *          ==》 为了让同一个窗口时间范围的计算结果到一起去
         *
         * 2、对同一个窗口范围的count值进行处理: 排序、取前N个
         *    =》 按照 windowEnd做keyby
         *    =》 使用process, 来一条调用一次,需要先存,分开存,用HashMap,key=windowEnd,value=List
         *      =》 使用定时器,对 存起来的结果 进行 排序、取前N个
         */

        // 1. 按照 vc 分组、开窗、聚合(增量计算+全量打标签)
        //  开窗聚合后,就是普通的流,没有了窗口信息,需要自己打上窗口的标记 windowEnd
        SingleOutputStreamOperator<Tuple3<Integer, Integer, Long>> windowAgg = sensorDS
            .keyBy(WaterSensor::getVc)
            .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
            .aggregate(
                new VcCountAgg(),
                new WindowResult()
            );


        // 2. 按照窗口标签(窗口结束时间)keyby,保证同一个窗口时间范围的结果,到一起去。排序、取TopN
        windowAgg.keyBy(r -> r.f2)
            .process(new TopN(2))
            .print();


        env.execute();
    }


    public static class VcCountAgg implements AggregateFunction<WaterSensor, Integer, Integer> {

        @Override
        public Integer createAccumulator() {
            return 0;
        }

        @Override
        public Integer add(WaterSensor value, Integer accumulator) {
            return accumulator + 1;
        }

        @Override
        public Integer getResult(Integer accumulator) {
            return accumulator;
        }

        @Override
        public Integer merge(Integer a, Integer b) {
            return null;
        }
    }


    /**
     * 泛型如下:
     * 第一个:输入类型 = 增量函数的输出  count值,Integer
     * 第二个:输出类型 = Tuple3(vc,count,windowEnd) ,带上 窗口结束时间 的标签
     * 第三个:key类型 , vc,Integer
     * 第四个:窗口类型
     */
    public static class WindowResult extends ProcessWindowFunction<Integer, Tuple3<Integer, Integer, Long>, Integer, TimeWindow> {

        @Override
        public void process(Integer key, Context context, Iterable<Integer> elements, Collector<Tuple3<Integer, Integer, Long>> out) throws Exception {
            // 迭代器里面只有一条数据,next一次即可
            Integer count = elements.iterator().next();
            long windowEnd = context.window().getEnd();
            out.collect(Tuple3.of(key, count, windowEnd));
        }
    }


    public static class TopN extends KeyedProcessFunction<Long, Tuple3<Integer, Integer, Long>, String> {
        // 存不同窗口的 统计结果,key=windowEnd,value=list数据
        private Map<Long, List<Tuple3<Integer, Integer, Long>>> dataListMap;
        // 要取的Top数量
        private int threshold;

        public TopN(int threshold) {
            this.threshold = threshold;
            dataListMap = new HashMap<>();
        }

        @Override
        public void processElement(Tuple3<Integer, Integer, Long> value, Context ctx, Collector<String> out) throws Exception {
            // 进入这个方法,只是一条数据,要排序,得到齐才行 ===》 存起来,不同窗口分开存
            // 1. 存到HashMap中
            Long windowEnd = value.f2;
            if (dataListMap.containsKey(windowEnd)) {
                // 1.1 包含vc,不是该vc的第一条,直接添加到List中
                List<Tuple3<Integer, Integer, Long>> dataList = dataListMap.get(windowEnd);
                dataList.add(value);
            } else {
                // 1.1 不包含vc,是该vc的第一条,需要初始化list
                List<Tuple3<Integer, Integer, Long>> dataList = new ArrayList<>();
                dataList.add(value);
                dataListMap.put(windowEnd, dataList);
            }

            // 2. 注册一个定时器, windowEnd+1ms即可(
            // 同一个窗口范围,应该同时输出,只不过是一条一条调用processElement方法,只需要延迟1ms即可
            ctx.timerService().registerEventTimeTimer(windowEnd + 1);

        }


        @Override
        public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
            super.onTimer(timestamp, ctx, out);
            // 定时器触发,同一个窗口范围的计算结果攒齐了,开始 排序、取TopN
            Long windowEnd = ctx.getCurrentKey();
            // 1. 排序
            List<Tuple3<Integer, Integer, Long>> dataList = dataListMap.get(windowEnd);
            dataList.sort(new Comparator<Tuple3<Integer, Integer, Long>>() {
                @Override
                public int compare(Tuple3<Integer, Integer, Long> o1, Tuple3<Integer, Integer, Long> o2) {
                    // 降序, 后 减 前
                    return o2.f1 - o1.f1;
                }
            });


            // 2. 取TopN
            StringBuilder outStr = new StringBuilder();

            outStr.append("================================\n");
            // 遍历 排序后的 List,取出前 threshold 个, 考虑可能List不够2个的情况  ==》 List中元素的个数 和 2 取最小值
            for (int i = 0; i < Math.min(threshold, dataList.size()); i++) {
                Tuple3<Integer, Integer, Long> vcCount = dataList.get(i);
                outStr.append("Top" + (i + 1) + "\n");
                outStr.append("vc=" + vcCount.f0 + "\n");
                outStr.append("count=" + vcCount.f1 + "\n");
                outStr.append("窗口结束时间=" + vcCount.f2 + "\n");
                outStr.append("================================\n");
            }

            // 用完的List,及时清理,节省资源
            dataList.clear();

            out.collect(outStr.toString());
        }
    }
}


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
16天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
47 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
65 0
|
1月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
131 0
|
1月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
43 0
|
1月前
|
SQL 消息中间件 分布式计算
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
40 0
|
1月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
129 0
|
3月前
|
大数据 API 数据处理
揭秘!Flink如何从默默无闻到大数据界的璀璨明星?起源、设计理念与实战秘籍大公开!
【8月更文挑战第24天】Apache Flink是一款源自Stratosphere项目的开源流处理框架,由柏林理工大学等机构于2010至2014年间开发,并于2014年捐赠给Apache软件基金会。Flink设计之初即聚焦于提供统一的数据处理模型,支持事件时间处理、精确一次状态一致性等特性,实现了流批一体化处理。其核心优势包括高吞吐量、低延迟及强大的容错机制。
61 1
|
3月前
|
API C# Shell
WPF与Windows Shell完美融合:深入解析文件系统操作技巧——从基本文件管理到高级Shell功能调用,全面掌握WPF中的文件处理艺术
【8月更文挑战第31天】Windows Presentation Foundation (WPF) 是 .NET Framework 的关键组件,用于构建 Windows 桌面应用程序。WPF 提供了丰富的功能来创建美观且功能强大的用户界面。本文通过问题解答的形式,探讨了如何在 WPF 应用中集成 Windows Shell 功能,并通过具体示例代码展示了文件系统的操作方法,包括列出目录下的所有文件、创建和删除文件、移动和复制文件以及打开文件夹或文件等。
76 0
|
存储 监控 分布式数据库
Flink实战:全局TopN分析与实现
Flink 全局TopN分析与实现
1853 0
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。