R-CNN:使用自己的数据训练 Faster R-CNN 的 ResNet-50 模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 上次使用 Faster R-CNN 训练了一个 VGG-16 的网络,为了再提升识别的准确率,利用 ResNet 网络在同样的数据上面训练了多一次。

上次使用 Faster R-CNN 训练了一个 VGG-16 的网络,为了再提升识别的准确率,利用 ResNet 网络在同样的数据上面训练了多一次。


基本的过程和在训练 VGG-16 网络时差不多,可参照 使用自己的数据训练 Faster R-CNN 的 VGG-16 模型

一、训练网络

(一)下载 ResNet-50 的 prototxt 文件

在我的 Github 上面可以下载我使用的文件,当然你也可以使用不同的 ResNet 网络结构。

(二)相关文件修改

1. cd $FRCN_ROOT/lib/rpn/generate_anchors.py

# 在 37 行:
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
                     scales=2**np.arange(3, 6)):
# 修改为:
def generate_anchors(base_size=16, ratios=[0.5, 1, 2],
                     scales=2**np.arange(1, 6)):
AI 代码解读

2. cd $FRCN_ROOT/lib/rpn/anchor_target_layer.py

# 在 28 行:
        anchor_scales = layer_params.get('scales', (8, 16, 32))
# 修改为:
        anchor_scales = layer_params.get('scales', (2, 4, 8, 16, 32))
AI 代码解读

3. cd $FRCN_ROOT/lib/rpn/proposal_layer.py

# 在 29 行:
        anchor_scales = layer_params.get('scales', (8, 16, 32))
# 修改为:
        anchor_scales = layer_params.get('scales', (2, 4, 8, 16, 32))
AI 代码解读

4. pascal_voc.py、imdb.py、train.prototxt、test.prototxt、.pt文件 的修改参考 使用自己的数据训练 Faster R-CNN 的 VGG-16 模型

5. 因为我们使用了 5 个尺度的 anchors,所以之前的 9 个 anchors 变成了 3*5=15 个。
修改 prototxt 和 pt文件,将其中的 18 换成 30。

layer {
  name: "rpn_cls_score"
  type: "Convolution"
  bottom: "rpn/output"
  top: "rpn_cls_score"
  param { lr_mult: 1.0 }
  param { lr_mult: 2.0 }
  convolution_param {
    num_output: 30   # 2(bg/fg) * 9(anchors)    ///将 18 换成 30
    kernel_size: 1 pad: 0 stride: 1
    weight_filler { type: "gaussian" std: 0.01 }
    bias_filler { type: "constant" value: 0 }
  }
AI 代码解读

(三)下载 ImageNet 模型

下载 ImageNet 预训练文件:ResNet-50.v2.caffemodel

(四)清除缓存

删除缓存文件:
$FRCN_ROOT/data/VOCdevkit2007/annotations_cache/annots.pkl
$FRCN_ROOT/data/cache 下的 pkl 文件
如果不清除缓存可能会报错。

(五)开始训练

参照 VGG16 的训练命令:
cd $FRCN_ROOT

./experiments/scripts/faster_rcnn_end2end.sh 0 ResNet-50 pascal_voc

==注意:第三个参数 ‘ResNet-50’,一定要和你的文件夹名字对应,比如我的文件放在$FRCN_ROOT/models/pascal_voc/ResNet-50 里面,所以我的第三个参数就为我目录的名称。==


由于 ResNet-50 的网络更深,训练的时间也需要更久,每一次迭代大约需要 0.5s ,训练这个网络我用了大概 10 个小时,但效果会比用 VGG 16 的好,主要是对小尺度的物体检测更加准确了。

这是我训练时各类的 AP :

目录
打赏
0
0
0
0
3
分享
相关文章
FRCNN来袭 | Faster RCNN与FCN永不遗忘,联邦学习+边缘数据既保护隐私也提升性能
FRCNN来袭 | Faster RCNN与FCN永不遗忘,联邦学习+边缘数据既保护隐私也提升性能
471 0
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
何恺明ResNet级神作,分形生成模型计算效率狂飙4000倍!清华校友一作
何恺明ResNet级神作,分形生成模型计算效率狂飙4000倍!清华校友一作
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
222 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
AI计算机视觉笔记二十五:ResNet50训练部署教程
该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享
【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享

热门文章

最新文章

相关实验场景

更多