AI计算机视觉笔记二十五:ResNet50训练部署教程

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 该项目旨在训练ResNet50模型并将其部署到RK3568开发板上。首先介绍了ResNet50网络,该网络由何恺明等人于2015年提出,解决了传统卷积神经网络中的退化问题。项目使用车辆分类数据集进行训练,并提供了数据集下载链接。环境搭建部分详细描述了虚拟环境的创建和所需库的安装。训练过程中,通过`train.py`脚本进行了15轮训练,并可视化了训练和测试结果。最后,项目提供了将模型转换为ONNX和PT格式的方法,以便在RK3568上部署。

ResNet50训练主要还是想部署到RK3568开发板上,先记录下训练和转成ONNX模型过程。

一、 Resnet50简介

   ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。 残差网络的特点是容易优化,并且能够通过增加相当的深度来提高准确率。其内部的残差块使用了跳跃连接,缓解了在深度神经网络中增加深度带来的梯度消失问题。

image.png

二、数据集下载

   本教程以车辆分类算法为例,数据集的百度网盘下载链接为:
https://pan.baidu.com/s/1pkYm9AA3s3WDM7GecShlbQ 提取码:6666​

解压完成后得到以下两个文件夹:
image.png
打开可以看到一共10类汽车:

image.png
image.png

三、环境搭建

1、创建虚拟环境

conda create -n Resnet50_env python=3.8 -y

2、激活环境

conda activate Resnet50_env
注意:使用的是CPU版本,电脑无GPU

3、安装环境

pip install numpy
pip install torch
pip install torchvision
pip install matplotlib
至此,环境安装完成,开始训练

四、 ResNet50图像分类训练

直接上源码:train.py

# -#-coding:utf-8 -*-

import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
from torch.autograd.variable import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

# 2.定义超参数
BATCH_SIZE = 16  # 每批处理的数据
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')  # 放在cuda或者cpu上训练
EPOCHS = 15  # 训练数据集的轮次
modellr = 1e-3

# 3.构建pipeline,对图像做处理
pipeline = transforms.Compose([
    # 分辨率重置为256
    transforms.Resize(256),
    # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
    transforms.CenterCrop(224),
    # 将图片转成tensor
    transforms.ToTensor(),
    # 正则化,模型出现过拟合现象时,降低模型复杂度
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# 图片路径(训练图片和测试图片的)
base_dir_train = 'G:/enpei_Project_Code/22_Resnet50_bus/1.data/datasets/train'
base_dir_val = 'G:/enpei_Project_Code/22_Resnet50_bus/1.data/datasets/val'

# 4. 加载数据集
train_dataset = datasets.ImageFolder(root=base_dir_train, transform=pipeline)
print("train_dataset=" + repr(train_dataset[1][0].size()))
print("train_dataset.class_to_idx=" + repr(train_dataset.class_to_idx))
# 创建训练集的可迭代对象,一个batch_size地读取数据,shuffle设为True表示随机打乱顺序读取
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)

# 测试集
val_dataset = datasets.ImageFolder(root=base_dir_val, transform=pipeline)
print(val_dataset)
print("val_dataset=" + repr(val_dataset[1][0].size()))
print("val_dataset.class_to_idx=" + repr(val_dataset.class_to_idx))
# 创建测试集的可迭代对象,一个batch_size地读取数据
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=True)


# 获得一批测试集的数据
images, labels = next(iter(val_loader))
print(images.shape)
print(labels.shape)


# 损失函数,交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 使用预训练模型
resnet_model = torchvision.models.resnet50(pretrained=True)
num_ftrs = resnet_model.fc.in_features
resnet_model.fc = nn.Linear(num_ftrs, 10)
resnet_model.to(DEVICE)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(resnet_model.parameters(), lr=modellr)
#optimizer = optim.SGD(net.parameters(), lr = 0.01)

train_loss_list = []
train_accuracy_list = []
test_loss_list = []
test_accuracy_list = []
train_iteration_list = []
test_iteration_list = []


best_val_acc = 0


# 定义训练方法
def train(model, device, train_loader, optimizer, epoch):
    iteration = 0
    train_correct = 0.0
    model.train()
    sum_loss = 0.0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        # 获取数据与标签
        data, target = Variable(data).to(device), Variable(target).to(device)

        # 梯度清零
        optimizer.zero_grad()

        # 计算损失
        output = model(data)
        loss = criterion(output, target)

        #反向传播
        loss.backward()

        #更新参数
        optimizer.step()

        print_loss = loss.data.item()
        sum_loss += print_loss
        _, train_predict = torch.max(output.data, 1)

        if torch.cuda.is_available():
            train_correct += (train_predict.cuda() == target.cuda()).sum()
        else:
            train_correct += (train_predict == target).sum()
        accuracy = (train_correct / total_num) * 100
        print("Epoch: %d , Batch: %3d , Loss : %.8f,train_correct:%d , train_total:%d , accuracy:%.6f" % (
            epoch + 1, batch_idx + 1, loss.item(), train_correct, total_num, accuracy))
        # 存在集合画图
        if (epoch + 1) == EPOCHS:  # 只画出最后一个epoch时候的准确度变化曲线
            iteration += 1
            train_loss_list.append(loss.item())
            train_iteration_list.append(iteration)
            train_accuracy_list.append(accuracy)


# 定义验证方法
def val(model, device, val_loader, epoch):
    print("=====================预测开始=================================")
    iteration = 0
    model.eval()
    test_loss = 0.0
    correct = 0.0
    total_num = len(val_loader.dataset)
    print(total_num, len(val_loader))
    with torch.no_grad():
        for data, target in val_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            output = model(data)
            loss = criterion(output, target)
            _, pred = torch.max(output.data, 1)
            if torch.cuda.is_available():
                correct += torch.sum(pred.cuda() == target.cuda())
            else:
                correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        acc = correct / total_num * 100
        avg_loss = test_loss / len(val_loader)
        """
            因为调用这个方法的时候就是每次结束训练一次之后调用
        """
        # iteration += 1
        # 存入集合准备画图
        test_loss_list.append(avg_loss)
        test_accuracy_list.append(acc)
        test_iteration_list.append(epoch)
        print('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.6f}%)\n'.format(
            avg_loss, correct, len(val_loader.dataset), acc))

        global best_val_acc
        if acc > best_val_acc:
            best_val_acc = acc
            print("Best Accuracy:{:.6f}%".format(best_val_acc))
            torch.save(resnet_model.state_dict(), 'best-{:.6f}.model.pth'.format(best_val_acc))  # 保存模型


# 训练
for epoch in range(EPOCHS):
    train(resnet_model, DEVICE, train_loader, optimizer, epoch)
    val(resnet_model, DEVICE, val_loader, epoch)
    #torch.save(resnet_model, 'model.pth')  # 保存模型

# 可视化测试机的loss和accuracy
plt.figure(1)
plt.plot(test_iteration_list, test_loss_list)
plt.title("ResNet50 test loss")
plt.ylabel("loss")
plt.xlabel("Number of test iteration")
plt.show()

plt.figure(2)
plt.plot(test_iteration_list, test_accuracy_list)
plt.title("ResNet50 test accuracy")
plt.xlabel("Number of test iteration")
plt.ylabel("accuracy")
plt.show()

# 可视化训练集loss和accuracy
plt.figure(3)
plt.plot(train_iteration_list, train_loss_list)
plt.title("ResNet50 train loss")
plt.xlabel("Number of train iteration")
plt.ylabel("accuracy")
plt.show()

plt.figure(4)
plt.plot(train_iteration_list, train_accuracy_list)
plt.title("ResNet50 train accuracy")
plt.xlabel("Number of train iteration")
plt.ylabel("accuracy")
plt.show()

代码需要注意的是数据集路径,用的是绝对路径,自行修改。
image.png
代码训练的epoch是15,等待一段时间吧!

五、测试模型

测试模型脚本predict.py

import os
from PIL import Image
import cv2
import torch
import torch.nn as nn
from torch.autograd.variable import Variable
import torchvision
from torchvision import transforms

# 0-SUV, 1-BUS, 2-family sedan, 3-fire engine, 4-heavy truck, 
# 5-jeep, 6-mini bus, 7-racing car, 8-taxi, 9-truck

def predict_single_image():

    MODEL_SAVE_FILE = 'best-82.000000.model.pth'
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

    model = torchvision.models.resnet50()
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 10)
    model.to(device)

    model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))


    model = torch.nn.DataParallel(model,device_ids=[0])
    model.eval()

    img = cv2.imread("test.jpg")
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(img)

    pipeline = transforms.Compose([
    # 分辨率重置为256
    transforms.Resize(256),
    # 对加载的图像作归一化处理, 并裁剪为[224x224x3]大小的图像(因为这图片像素不一致直接统一)
    transforms.CenterCrop(224),
    # 将图片转成tensor
    transforms.ToTensor(),
    # 正则化,模型出现过拟合现象时,降低模型复杂度
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])

    image = pipeline(image)
    image = image.unsqueeze(0)
    print(image.shape)

    input_var = Variable(image).float().to(device)
    output = model(input_var)
    print("output:", output)
    print("output.shape:", output.shape)

    soft_output = torch.softmax(output, dim=-1)
    print("soft_output:", soft_output)

    percent, predicted = torch.max(soft_output.data, 1)
    print("percent:", percent)
    print("predicted:", predicted)

    '''
    USE_GPU = torch.cuda.is_available()
    if USE_GPU:
        inputs = inputs.cuda()
    if not os.path.exists(MODEL_SAVE_FILE):
        print('can not find model save file.')
        exit()
    else:
        if USE_GPU:
            model.load_state_dict(torch.load(MODEL_SAVE_FILE))
        else:
            model.load_state_dict(torch.load(MODEL_SAVE_FILE, map_location=lambda storage, loc: storage))
        outputs = model(inputs)
        _, prediction_tensor = torch.max(outputs.data, 1)
        if USE_GPU:
            prediction = prediction_tensor.cpu().numpy()[0][0]
            print('predict: ', prediction)
            print('this is {}'.format(classes_name[prediction]))
        else:
            prediction = prediction_tensor.numpy()[0][0]
            print('predict: ', prediction)
            print('this is {}'.format(classes_name[prediction]))
    '''


predict_single_image()

运行

python predict.py
image.png

六、模型转换

1、转成onnx模型

pth_to_onnx.py

import torch
import torch.nn as nn
import torchvision
from torch.autograd.variable import Variable


MODEL_SAVE_FILE = 'best-82.000000.model.pth'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model = torchvision.models.resnet50()
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
model.to(device)

model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))

batch_size = 1  #批处理大小

# #set the model to inference mode
model.eval()

d_input = Variable(torch.randn(1, 3, 224, 224))
export_onnx_file = "10class_ResNet50.onnx"        # 目的ONNX文件名
torch.onnx.export(model, d_input, export_onnx_file, opset_version=12,verbose=True)

这里需要注意的 是opset_version算子,rk3568用12
python pth_to_onnx.py
image.png
onnx模型是我需要的,打算部署到rk3568,需要把onnx模型转成rknn模型,后续测试

2、转成pt模型

pth_to_pt.py

import torch
import torch.nn as nn
import torchvision


MODEL_SAVE_FILE = 'best-82.000000.model.pth'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

model = torchvision.models.resnet50()
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10)
model.to(device)

model.load_state_dict(torch.load(MODEL_SAVE_FILE,map_location='cpu'))

model.eval()

example = torch.rand(1,3,224,224).to(device)
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save('./10class_ResNet50.pt')

运行转换:

python pth_to_pt.py

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
3月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
725 56
|
20天前
|
机器学习/深度学习 人工智能 JSON
PHP从0到1实现 AI 智能体系统并且训练知识库资料
本文详解如何用PHP从0到1构建AI智能体,涵盖提示词设计、记忆管理、知识库集成与反馈优化四大核心训练维度,结合实战案例与系统架构,助你打造懂业务、会进化的专属AI助手。
140 6
|
机器学习/深度学习 PyTorch 测试技术
|
10月前
|
机器学习/深度学习 算法 PyTorch
昇腾910-PyTorch 实现 ResNet50图像分类
本实验基于PyTorch,在昇腾平台上使用ResNet50对CIFAR10数据集进行图像分类训练。内容涵盖ResNet50的网络架构、残差模块分析及训练代码详解。通过端到端的实战讲解,帮助读者理解如何在深度学习中应用ResNet50模型,并实现高效的图像分类任务。实验包括数据预处理、模型搭建、训练与测试等环节,旨在提升模型的准确率和训练效率。
446 54
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】31. 卷积神经网络之残差网络(ResNet)介绍及其Pytorch实现
【从零开始学习深度学习】31. 卷积神经网络之残差网络(ResNet)介绍及其Pytorch实现
|
机器学习/深度学习 PyTorch 算法框架/工具
ResNet代码复现+超详细注释(PyTorch)
ResNet代码复现+超详细注释(PyTorch)
4851 1
|
机器学习/深度学习 数据采集 PyTorch
PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)
PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)
958 2
|
机器学习/深度学习 PyTorch 语音技术
Pytorch迁移学习使用Resnet50进行模型训练预测猫狗二分类
深度学习在图像分类、目标检测、语音识别等领域取得了重大突破,但是随着网络层数的增加,梯度消失和梯度爆炸问题逐渐凸显。随着层数的增加,梯度信息在反向传播过程中逐渐变小,导致网络难以收敛。同时,梯度爆炸问题也会导致网络的参数更新过大,无法正常收敛。 为了解决这些问题,ResNet提出了一个创新的思路:引入残差块(Residual Block)。残差块的设计允许网络学习残差映射,从而减轻了梯度消失问题,使得网络更容易训练。
2166 0
|
机器学习/深度学习 人工智能 PyTorch
ResNet详解:网络结构解读与PyTorch实现教程
ResNet详解:网络结构解读与PyTorch实现教程
3121 0

热门文章

最新文章