【MOSMA】基于粘菌算法求解多目标优化问题附matlab代码

简介: 【MOSMA】基于粘菌算法求解多目标优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

本文提出了一种多目标粘菌算法 (MOSMA),这是最近开发的粘菌算法 (SMA) 的多目标变体,用于处理工业中的多目标优化问题。最近,为了处理优化问题,优化社区提出了几种元启发式和进化优化技术。在评估多目标优化 (MOO) 问题时,这些方法往往会遇到低质量的解决方案,而不是解决识别帕累托最优解的准确估计和增加所有目标的分布的目标函数。SMA 方法遵循在实验室实验中从粘菌的振荡行为中获得的逻辑。与其他成熟的方法相比,SMA 算法显示出强大的性能,它是通过使用正负反馈系统结合最佳食物路径来设计的。所提出的 MOSMA 算法采用相同的底层 SMA 收敛机制,结合精英非支配排序方法来估计帕累托最优解。作为后验方法,MOSMA 中保留了多目标公式,并利用拥挤距离算子来确保增加所有目标的最佳解决方案的覆盖范围。为了验证和验证 MOSMA 的性能,考虑了 41 个不同的案例研究,包括无约束、约束和现实世界的工程设计问题。将 MOSMA 的性能与多目标共生生物搜索 (MOSOS) 进行比较,基于分解的多目标进化算法(MOEA / D)和多目标水循环算法(MOWCA)在不同性能指标方面,例如世代距离(GD),反向世代距离(IGD),最大传播(MS) 、间距和运行时间。仿真结果证明了所提出的算法在实现所有多目标问题的高质量解决方案方面的优越性,包括线性、非线性、连续和离散 Pareto 最优前沿。结果表明所提出的算法在解决复杂的多目标问题中是有效的。最大传播 (MS)、间距和运行时间。仿真结果证明了所提出的算法在实现所有多目标问题的高质量解决方案方面的优越性,包括线性、非线性、连续和离散 Pareto 最优前沿。结果表明所提出的算法在解决复杂的多目标问题中是有效的。最大传播 (MS)、间距和运行时间。仿真结果证明了所提出的算法在实现所有多目标问题的高质量解决方案方面的优越性,包括线性、非线性、连续和离散 Pareto 最优前沿。结果表明所提出的算法在解决复杂的多目标问题中是有效的。

⛄ 部分代码

%% Multiple Objective Slime Mould Algorithm (MOSMA)

% M. Premkumar, P. Jangir, R. Sowmya, H. H. Alhelou, A. A. Heidari and H. Chen,

% "MOSMA: Multi-objective Slime Mould Algorithm Based on Elitist Non-dominated Sorting,"

% in IEEE Access, doi: 10.1109/ACCESS.2020.3047936.

%% Objective Function

% The objective function description contains information about the

% objective function. M is the dimension of the objective space, D is the

% dimension of decision variable space, LB and UB are the

% range for the variables in the decision variable space. User has to

% define the objective functions using the decision variables. Make sure to

% edit the function 'evaluate_objective' to suit your needs.

clc

clear all

close all

D = 30; % Number of decision variables

M = 2; % Number of objective functions

K=M+D;

LB = ones(1, D).*0; %  LB - A vector of decimal values which indicate the minimum value for each decision variable.

UB = ones(1, D).*1; % UB - Vector of maximum possible values for decision variables.

GEN = 200;  % Set the maximum number of generation (GEN)

ecosize = 200;      % Set the population size (NP)

ishow = 10;

%% Start the evolution process

Pareto = MOSMA(D,M,LB,UB,ecosize,GEN,ishow);

Obtained_Pareto= Pareto(:,D+1:D+M); % extract data to plot

Obtained_Pareto=sortrows(Obtained_Pareto,2);

True_Pareto=load('ZDT3.txt');

%% Plot data

if M == 2

   plot(Obtained_Pareto(:,1),Obtained_Pareto(:,2),'o','LineWidth',2,...

       'MarkerEdgeColor','r','MarkerSize',2);

   hold on

   plot(True_Pareto(:,1),True_Pareto(:,2),'k');

   title('Optimal Solution Pareto Set using MOSMA');

   legend('MOSMA');

   xlabel('F_1');

   ylabel('F_2');

elseif M == 3

   plot3(Obtained_Pareto(:,1),Obtained_Pareto(:,2),Obtained_Pareto(:,3),'o','LineWidth',2,...

       'MarkerEdgeColor','r','MarkerSize',2);

   hold on

   plot3(Obtained_Pareto(:,1),Obtained_Pareto(:,2),Obtained_Pareto(:,3),'.','LineWidth',2,...

       'MarkerEdgeColor','k','MarkerSize',6);

   title('Optimal Solution Pareto Set using MOSMA');

   legend('MOSMA');

   xlabel('F_1');

   ylabel('F_2');

   zlabel('F_3');

end

%%  Metric Value

M_IGD=IGD(Obtained_Pareto,True_Pareto);

M_GD=GD(Obtained_Pareto,True_Pareto);

M_HV=HV(Obtained_Pareto,True_Pareto);

M_Spacing=Spacing(Obtained_Pareto,True_Pareto);

M_Spread=Spread(Obtained_Pareto,True_Pareto);

M_DeltaP=DeltaP(Obtained_Pareto,True_Pareto);

display(['The IGD Metric obtained by MOSMA is     : ', num2str(M_IGD)]);

display(['The GD Metric obtained by MOSMA is      : ', num2str(M_GD)]);

display(['The HV Metric obtained by MOSMA is      : ', num2str(M_HV)]);

display(['The Spacing Metric obtained by MOSMA is : ', num2str(M_Spacing)]);

display(['The Spread Metric obtained by MOSMA is  : ', num2str(M_Spread)]);

display(['The DeltaP Metric obtained by MOSMA is  : ', num2str(M_DeltaP)]);

⛄ 运行结果

⛄ 参考文献

M. Premkumar, Pradeep Jangir, R. Sowmya, Hassan Haes Alhelou, Ali Asghar Heidari, and Huiling Chen, "MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting," IEEE Access, vol. 9, pp. 3229-3248, 2021.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
6天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
17天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。