基于萤火虫算法的图像分割的应用附Matlab代码

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 基于萤火虫算法的图像分割的应用附Matlab代码


✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

为了提高图像的分割效果,提出一种萤火虫算法优化聚类的图像分割方法。获得最大聚类优化目标函数,采用萤火虫算法对目标函数进行求解,找到图像的最佳聚类个数,根据最佳聚类个数对图像进行分割,通过仿真实验对分割效果进行测试。结果表明,该方法可以迅速、准确找到最佳阈值,提高图像分割的准确度和抗噪性能,可以较好地满足图像分割实时性要求。

⛄ 部分代码

%% 使用聚类的差分进化图像颜色量化


清除;

clc;

警告('关闭');

img=imread('r.jpg');

img=im2double(img);

% 分离颜色通道

R=img(:,:,1);

G=img(:,:,2);

B=img(:,:,3);

% 将每个通道重塑为一个向量并组合所有三个通道

X=[R(:) G(:) B(:)];


%% 启动 DE 集群

k = 6; % 颜色数(聚类中心)


%------------------------------------------------ --

CostFunction=@(m) ClusterCost(m, X); %成本函数

VarSize=[k 大小(X,2)]; % 决策变量矩阵大小

nVar=prod(VarSize); 决策变量的百分比

VarMin= repmat(min(X),k,1); % 变量下限

VarMax= repmat(max(X),k,1); % 变量上限


% DE 参数

最大值=100;% 最大迭代

nPop=k*2; % 人口规模

%

beta_min=0.2;% 比例因子的下限

beta_max=0.8;% 比例因子上限

pCR=0.2;% 交叉概率


% 开始

empty_individual.Position=[];

empty_individual.Cost=[];

empty_individual.Out=[];

BestSol.Cost=inf;

pop=repmat(empty_individual,nPop,1);

对于 i=1:nPop

pop(i).Position=unifrnd(VarMin,VarMax,VarSize);  

[pop(i).Cost, pop(i).Out]=CostFunction(pop(i).Position);  

如果 pop(i).Cost<BestSol.Cost

BestSol=pop(i);

结尾

结尾

BestRes=zeros(MaxIt,1);

% DE Body

for it=1:MaxIt

for i=1:nPop        

x=pop(i).Position;        

A=randperm(nPop);        

A(A==i)=[];        

a=A(1);

b=A(2);

c=A(3);      

% Mutation

beta=unifrnd(beta_min,beta_max,VarSize);

y=pop(a).Position+beta.*(pop(b).Position-pop(c).Position);

y=max(y,VarMin);

y=min(y,VarMax);        

% Crossover

z=zeros(size(x));

j0=randi([1 numel(x)]);

for j=1:numel(x)

if j==j0 || rand<=pCR

z(j)=y(j);

else

z(j)=x(j);

end

end        

NewSol.Position=z;

[NewSol.Cost, NewSol.Out]=CostFunction(NewSol.Position);      

if NewSol.Cost<pop(i).Cost

pop(i)=NewSol;          

if pop(i).Cost<BestSol.Cost

BestSol=pop(i);

end

end

end    

% Update Best Cost

BestRes(it)=BestSol.Cost;    

% Iteration

disp(['In Iteration # ' num2str(it) ': Highest Cost IS = ' num2str(BestRes(it))]);    

DECenters=Res(X, BestSol);

end

DElbl=BestSol.Out.ind;


% Plot DE Train

figure;

plot(BestRes,'--k','linewidth',2);

title('DE Train');

xlabel('DE Iteration Number');

ylabel('DE Best Cost Value');


%% Converting cluster centers and its indexes into image

Z=DECenters(DElbl',:);

R2=reshape(Z(:,1),size(R));

G2=reshape(Z(:,2),size(G));

B2=reshape(Z(:,3),size(B));

% Attaching color channels

quantized=zeros(size(img));

quantized(:,:,1)=R2;

quantized(:,:,2)=G2;

quantized(:,:,3)=B2;

% Plot Results

figure;

subplot(1,2,1);

imshow(img);title('Original');

subplot(1,2,2);

imshow(quantized);title('Quantized Image');

⛄ 运行结果

⛄ 参考文献

[1]吴鹏. 腐火虫算法优化最大程度的图像分割方法[J]. 计算机工程与应用, 2014.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
12天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
11天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
10天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
10天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。

热门文章

最新文章