图像识别试验 - 字符验证码、车牌号、身份证号

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介:

© 野比 2012

欢迎大家和我讨论相关问题。

代码在此(注意此版并非最终版)

光学字符识别(OCR)是非常有用的技术。在验证码识别、车牌号识别、文字识别方面,基于字符的识别技术算是比较容易上手的了(相比图文识别)。

闲来看到有朋友研究验证码识别,一时手痒,野比自己动手来做做验证码识别。当然,肯定只是简单的验证码。

名为验证码,实际上并不限于,还可以识别车牌号、身份证号、门牌号等各种乱七八糟的内容。

识别的流程很明确:

1、预处理图像

2、做y轴的投影

3、分析直方图分区

4、根据分区拆分图像为多个字符(很关键,拆得越好,后续识别率越高)

5、丢弃空白或无效字符

6、自动旋转字符(如果有倾斜),识别字符

如果样本中个图像有粘连,则可能造成分区不准确。这种情况下,需要进行旋转,但是怎样自动旋转,是个难题。

目前已可拆分出字符,下一步准备研究如何识别。(如果单个字符比较规范,可以利用现成的OCR控件)

这里有一些例子。

普通的验证码(毫无难度)

带干扰的验证码

较高强度干扰(目前使用的分区算法不能解决,需要更好的算法,比如动态阈值)

CSDN的验证码(毫无压力)

身份证号码

车牌号

补充个QQ验证码,用单一阈值方法,识别很困难,需要结合字符宽度进行判断

这是单一阈值分区的结果(没有限制宽度),可以看到效果很差。

继续研究如何优化分区算法,如何识别单个文字(可以考虑多重识别+样本训练)。

 

附上太平洋网站验证码。

有些粘连,但是可以通过固定字符宽度解决(宽度基本一致)

参考这张图(获得整个宽度,然后除以字符数得到每个宽度,分别提取)

二值化我用的Otsu算法,参考文献:"A threshold selection method from gray-level histograms", IEEE Trans. Systems, Man and Cybernetics 9(1), pp. 62–66, 1979

关于验证码,这篇论文很不错,建议参考:"Text-based CAPTCHA Strengths and Weaknesses", ACM Computer and Communication security 2011 (CSS'2011)

© 野比 2012

改进的去污算法

 

污损车牌号拆分字符

 

Ref:

二值化我用的Otsu算法,参考文献:"A threshold selection method from gray-level histograms", IEEE Trans. Systems, Man and Cybernetics 9(1), pp. 62–66, 1979

关于验证码,这篇论文很不错,建议参考:"Text-based CAPTCHA Strengths and Weaknesses", ACM Computer and Communication security 2011 (CSS'2011)

目录
相关文章
|
3月前
|
文字识别 算法 API
视觉智能开放平台产品使用合集之车牌识别的qps如何调整
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
|
人工智能 监控 算法
【视觉智能AI场景解决方案——智慧物流车牌识别】
随着AI技术的问世,物流行业迎来了速度、准确率、系统化的全方位提升 。通过使用AI识别车牌与车辆功能,物流企业可以实现对车辆的快速、准确的识别,提高物流车辆的管理效率。此外,AI还可以帮助物流企业实现对车辆功能的识别,如车辆类型、载重等,为物流调度提供更加科学的指导。AI识别车牌与车辆功能的应用正日益普及,为智慧物流行业带来了新的发展机遇。
544 0
|
机器学习/深度学习 存储 传感器
【图像识别-车牌识别】基于BP神经网络求解车牌识别问题含GUI界面和报告
【图像识别-车牌识别】基于BP神经网络求解车牌识别问题含GUI界面和报告
|
存储 机器学习/深度学习 传感器
【图像识别】基于模板匹配实现蓝色、绿色、黄色车牌识别附matlab代码
【图像识别】基于模板匹配实现蓝色、绿色、黄色车牌识别附matlab代码
|
5天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
32 9
|
4天前
|
机器学习/深度学习 人工智能 计算机视觉
探索深度学习在图像识别中的突破与挑战##
本文深入探讨了深度学习技术在图像识别领域的最新进展,重点分析了卷积神经网络(CNN)作为核心技术的演变历程,从LeNet到AlexNet,再到VGG、ResNet等先进架构的创新点。不同于传统摘要形式,本文摘要旨在通过一系列关键里程碑事件,勾勒出深度学习推动图像识别技术飞跃的轨迹,同时指出当前面临的主要挑战,如模型泛化能力、计算资源依赖性及数据偏见问题,为读者提供一个宏观且具体的发展脉络概览。 ##
24 7
|
2天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
3天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。
|
4天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
5天前
|
机器学习/深度学习 算法 数据处理
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了其背后的原理、主要算法以及在实际场景中的应用效果。同时,文章也指出了当前深度学习在图像识别领域面临的挑战,包括数据不平衡、模型泛化能力、计算资源需求等问题,并展望了未来的研究方向。