✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
1 深度极限学习机
人工神经网络的最大缺点是训练时间太长从而限制其实时应用范围,近年来,极限学习机(Extreme Learning Machine, ELM)的提出使得前馈神经网络的训练时间大大缩短,然而当原始数据混杂入大量噪声变量时,或者当输入数据维度非常高时,极限学习机算法的综合性能会受到很大的影响。深度学习算法的核心是特征映射,它能够摒除原始数据中的噪声,并且当向低维度空间进行映射时,能够很好的起到对数据降维的作用,因此我们思考利用深度学习的优势特性来弥补极限学习机的弱势特性从而改善极限学习机的性能。在本文中,首先介绍了基于自编码器的极限学习机(Auto Encode based Extreme Learning Machine, AE-ELM),它使用第一层自编码网络对输入数据进行降维除噪处理,再使用第二层自编码算法确定ELM输入权值以提升ELM有效性,最后使用最小二乘法确定ELM输出层权值。这种方法主要解决数据维度偏高且含有噪声时的情况,最后实验验证了AE-ELM在噪声数据下很好的提升了算法的性能。其次,详细介绍了基于极限学习机的自编码器(Extreme Learning Machine Auto Encode, ELM-AE),它能够对原始特征进行等维度,高维度,及低维度的特征映射,为ELM在超高维度下的应用奠定了基础。
2 多元宇宙优化算法
MVO算法源于多元宇宙理论,该理论认为:多元宇宙源于宇宙大爆炸,每一个宇宙都存在一个膨胀率使其膨胀,宇宙间存在黑洞和白洞,黑洞引力很大能够通过虫洞链接到另一个时空,黑洞会吸入所有物质甚至光,白洞就是由黑洞吸收过多物质后而开始吐出的物质。MVO算法依据多元宇宙理论的3个主要概念:白洞、黑洞和虫洞来建立数学模型,定义候选解为宇宙,候选解的适应度为宇宙的膨胀率。迭代过程中,每一个候选解为黑洞,适应度好的宇宙依轮盘赌原理成为白洞,黑洞和白洞交换物质(维度更换),部分黑洞可以通过虫洞链接穿越到最优宇宙附近(群体最优附近搜索)。本文绘出多元宇宙优化内部循环结构的逻辑流程,如图1所示。在图1中,黑洞有2种维度更新机制。其一,依照轮盘赌原则,针对排序并标准化后的各宇宙膨胀率,选出白洞序号,黑洞与其交换维度信息;其二,当满足Rand2<WEP时,黑洞通过虫洞穿越到最优宇宙周围,黑洞维度在最优宇宙维度附近通过TDR参数进行更新,其迭代利用式(1)进行。其中,j为待优化问题的具体维度。
式(1)—式(3)中,l和L为当前迭代步和最大迭代步,ub和lb为问题边界,BestX为最优宇宙位置,WEP和TDR为虫洞存在概率和旅行距离率,是多元宇宙优化算法的重要参数。式(2)可知,多元宇宙优化算法的参数TDR通过迭代呈凹型递减,先快速后缓慢地减少,参数WEP线性递增。
⛄ 部分代码
function X = pinv(A,tol)
%PINV Pseudoinverse.
% X = PINV(A) produces a matrix X of the same dimensions
% as A' so that A*X*A = A, X*A*X = X and A*X and X*A
% are Hermitian. The computation is based on SVD(A) and any
% singular values less than a tolerance are treated as zero.
%
% PINV(A,TOL) treats all singular values of A that are less than TOL as
% zero. By default, TOL = max(size(A)) * eps(norm(A)).
%
% Class support for input A:
% float: double, single
%
% See also RANK.
% Copyright 1984-2015 The MathWorks, Inc.
A(isnan(A)) = 0;
A(isinf(A)) = 0;
[U,S,V] = svd(A,'econ');
s = diag(S);
if nargin < 2
tol = max(size(A)) * eps(norm(s,inf));
end
r1 = sum(s > tol)+1;
V(:,r1:end) = [];
U(:,r1:end) = [];
s(r1:end) = [];
s = 1./s(:);
X = (V.*s.')*U';
⛄ 运行结果
⛄ 参考文献
[1]田艳丰, 王顺, 王哲,等. 基于粒子群算法改进极限学习机的风电功率短期预测[J]. 电器与能效管理技术, 2022(003):000.
[2]杨文珍, 何庆. 动态串行机制多元宇宙优化算法[J]. 计算机应用研究, 2021, 38(12):7.