基于变因子加权学习与邻代维度交叉策略的改进乌鸦算法求解单目标优化问题含Matlab代码

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
简介: 基于变因子加权学习与邻代维度交叉策略的改进乌鸦算法求解单目标优化问题含Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

针对乌鸦搜索算法(CSA)优化高维问题时存在寻优精度低,局部极值逃逸能力弱等问题,提出一种耦合多个体变因子加权学习机制与最优个体邻代维度交叉策略的改进乌鸦搜索算法(ICSA).该算法随迭代进程动态修正模型控制参数(感知概率和飞行长度),利用多个体的变因子加权学习机制保证子代个体同时继承跟随乌鸦与上代最优个体的位置信息以避免单个体继承的过快种群同化并减小陷入局部极值的风险;同时构建历史最优个体的邻代维度交叉策略,并按维度绝对差异大的优先替换原则更新最优个体位置,以保留历代最优维度信息并提高算法的局部极值逃逸能力.数值实验结果分别验证了模型参数对CSA算法性能的一定影响,加权学习因子不同递变形式对ICSA算法性能改善的有效性与差异性以及改进算法的优越寻优性能.

⛄ 部分代码

%% Benchmark Test functions

function [lb,ub,dim,fobj] = Get_Functions_details(F)

switch F

   case 'F1'

       fobj = @F1;

       lb=-100;

       ub=100;

       dim=30;

       

   case 'F2'

       fobj = @F2;

       lb=-10;

       ub=10;

       dim=30;

       

   case 'F3'

       fobj = @F3;

       lb=-100;

       ub=100;

       dim=30;

       

   case 'F4'

       fobj = @F4;

       lb=-100;

       ub=100;

       dim=30;

       

   case 'F5'

       fobj = @F5;

       lb=-30;

       ub=30;

       dim=30;

       

   case 'F6'

       fobj = @F6;

       lb=-100;

       ub=100;

       dim=30;

       

   case 'F7'

       fobj = @F7;

       lb=-1.28;

       ub=1.28;

       dim=30;

       

   case 'F8'

       fobj = @F8;

       lb=-500;

       ub=500;

       dim=30;

       

   case 'F9'

       fobj = @F9;

       lb=-5.12;

       ub=5.12;

       dim=30;

       

   case 'F10'

       fobj = @F10;

       lb=-32;

       ub=32;

       dim=30;

       

   case 'F11'

       fobj = @F11;

       lb=-600;

       ub=600;

       dim=30;

       

   case 'F12'

       fobj = @F12;

       lb=-50;

       ub=50;

       dim=30;

       

   case 'F13'

       fobj = @F13;

       lb=-50;

       ub=50;

       dim=30;

       

   case 'F14'

       fobj = @F14;

       lb=-65.536;

       ub=65.536;

       dim=2;

       

   case 'F15'

       fobj = @F15;

       lb=-5;

       ub=5;

       dim=4;

       

   case 'F16'

       fobj = @F16;

       lb=-5;

       ub=5;

       dim=2;

       

   case 'F17'

       fobj = @F17;

       lb=[-5,0];

       ub=[10,15];

       dim=2;

       

   case 'F18'

       fobj = @F18;

       lb=-5;

       ub=5;

       dim=2;

       

   case 'F19'

       fobj = @F19;

       lb=0;

       ub=1;

       dim=3;

       

   case 'F20'

       fobj = @F20;

       lb=0;

       ub=1;

       dim=6;    

       

   case 'F21'

       fobj = @F21;

       lb=0;

       ub=10;

       dim=4;    

%         dim=4;

   case 'F22'

       fobj = @F22;

       lb=0;

       ub=10;

       dim=4;    

       

   case 'F23'

       fobj = @F23;

       lb=0;

       ub=10;

       dim=4;

   end

   

end


% F1


function o = F1(x)

o=sum(x.^2);

end


% F2


function o = F2(x)

o=sum(abs(x))+prod(abs(x));

end


% F3


function o = F3(x)

dim=size(x,2);

o=0;

for i=1:dim

   o=o+sum(x(1:i))^2;

end

end


% F4


function o = F4(x)

o=max(abs(x));

end


% F5


function o = F5(x)

dim=size(x,2);

o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);

end


% F6


function o = F6(x)

o=sum(abs((x+.5)).^2);

end


% F7


function o = F7(x)

dim=size(x,2);

o=sum([1:dim].*(x.^4))+rand;

end


% F8


function o = F8(x)

o=sum(-x.*sin(sqrt(abs(x))));

end


% F9


function o = F9(x)

dim=size(x,2);

o=sum(x.^2-10*cos(2*pi.*x))+10*dim;

end


% F10


function o = F10(x)

dim=size(x,2);

o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);

end


% F11


function o = F11(x)

dim=size(x,2);

o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;

end


% F12


function o = F12(x)

dim=size(x,2);

o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...

(1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));

end


% F13


function o = F13(x)

dim=size(x,2);

o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...

((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));

end


% F14


function o = F14(x)

aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;...

-32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];


for j=1:25

   bS(j)=sum((x'-aS(:,j)).^6);

end

o=(1/500+sum(1./([1:25]+bS))).^(-1);

end


% F15


function o = F15(x)

aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];

bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;

o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);

end


% F16


function o = F16(x)

o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);

end


% F17


function o = F17(x)

o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;

end


% F18


function o = F18(x)

o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...

   (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));

end


% F19


function o = F19(x)

aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];

pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];

o=0;

for i=1:4

   o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end


% F20


function o = F20(x)

aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];

cH=[1 1.2 3 3.2];

pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...

.2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];

o=0;

for i=1:4

   o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));

end

end


% F21


function o = F21(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:5

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


% F22


function o = F22(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:7

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


% F23


function o = F23(x)

aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];

cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];


o=0;

for i=1:10

   o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);

end

end


function o=Ufun(x,a,k,m)

o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));

end

⛄ 运行结果

⛄ 参考文献

[1]赵世杰, 高雷阜, 于冬梅,等. 基于变因子加权学习与邻代维度交叉策略的改进CSA算法[J]. 电子学报, 2019, 47(1):9.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关文章
|
24天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
21天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
23天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
54 1
|
1月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
1月前
|
算法
优化策略:揭秘钢条切割与饼干分发的算法艺术
本文探讨了钢条切割与饼干分发两个经典算法问题,展示了算法在解决实际问题中的应用。钢条切割问题通过动态规划方法,计算出不同长度钢条的最大盈利切割方式,考虑焊接成本后问题更为复杂。饼干分发问题则采用贪心算法,旨在尽可能多的喂饱孩子,分别讨论了每个孩子一块饼干和最多两块饼干的情况。这些问题不仅体现了数学的精妙,也展示了工程师的智慧与创造力。
37 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人之数据结构与算法系列学习×单双链表精题详解、数据结构、C++、排序算法、java 、动态规划 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!