【图像重建】基于SIDER算法实现图像的压缩重建附matlab代码

简介: 【图像重建】基于SIDER算法实现图像的压缩重建附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

Diffusion MRI measurements using hyperpolarized gases are generally acquired during patient breath hold, which yields a compromise between achievable image resolution, lung coverage and number of b-values. In this work, we propose a novel method that accelerates the acquisition of MR diffusion data by undersampling in both spatial and b-value dimensions, thanks to incorporating knowledge about the signal decay into the reconstruction (SIDER). SIDER is compared to total variation (TV) reconstruction by assessing their effect on both the recovery of ventilation images and estimated mean alveolar dimensions (MAD). Both methods are assessed by retrospectively undersampling diffusion datasets of normal volunteers and COPD patients (n=8) for acceleration factors between x2 and x10. TV led to large errors and artefacts for acceleration factors equal or larger than x5. SIDER improved TV, presenting lower errors and histograms of MAD closer to those obtained from fully sampled data for accelerations factors up to x10. SIDER preserved image quality at all acceleration factors but images were slightly smoothed and some details were lost at x10. In conclusion, we have developed and validated a novel compressed sensing method for lung MRI imaging and achieved high acceleration factors, which can be used to increase the amount of data acquired during a breath-hold. This methodology is expected to improve the accuracy of estimated lung microstructure dimensions and widen the possibilities of studying lung diseases with MRI.

⛄ 部分代码

function Demo_SIDER

% function Demo_SIDER.m

%

% The proposed method incorporates the knowledge of the signal decay into

% the reconstruction (SIDER) to accelerate the acquisition of MR diffusion

% data by undersampling in both spatial and b-value dimensions.

%

% Demo for reconstructing diffusion lung MR images with spatial total

% variation (S-TV) and spatiotemporal total variation (ST-TV) using the

% Split Bregman formulation. SIDER combines total variation (TV) with a

% penalty function that promotes sparsity across the b-direction as follows

% min_u beta|grad_x,y u|_1 + gamma|M u|_1 st. ||Fu-f||^2 < delta, where the

% first term corresponds to spatial TV and M is is an operator that encodes

% the relationship between ventilation images for consecutives values of b,

% based on a stretched exponential model.

%

% The demo loads fully sampled data, undersampled data and reconstruct

% images using both TV and SIDER methods.

% Data is undersampled using a modified version of Lustig's variable

% density pdf, downloaded from (SparseMRI V0.2)

% http://web.stanford.edu/~mlustig/SparseMRI.html, see M. Lustig, D.L

% Donoho and J.M Pauly "Sparse MRI: The Application of Compressed Sensing

% for Rapid MR Imaging" Magnetic Resonance in Medicine, 2007 Dec;

% 58(6):1182-1195.

%



% -------------------------------------------------------------------------

% Load complex image

load('DataControl','b','uTarget');


% Choose one slice

zSlice      = 4;


uTarget     = uTarget(:,:,:,zSlice);

b           = b(1:5);

N           = size(uTarget);


[nel_Lm,xcenters_Lm]    = hist(150:20:450,30);


% -------------------------------------------------------------------------

% MASK FOR THE LUNG to define the region where to estimate D, alpha and Lm

% maps (this estimation is a pixel-by-pixel fitting so its calculation is

% not affected by the mask). The mask is automatically computed by

% thresholding the ventilation image

se      = strel('disk',3);

im      = imclose(abs(uTarget(:,:,1)),se);   % imdilate

[val, ind] = sort(im(:),'descend');

im      = im/val(5);

mask    = im>=0.3;                  % thresholding

se      = strel('disk',1);          % remove small objects

mask    = (imopen(abs(mask),se))>0;


h=figure;

subplot(2,1,1);

imagesc(abs((uTarget(:,:,1))));colorbar; colormap hot; axis image;

title('b=0');

subplot(2,1,2);

imagesc(abs((mask(:,:,1))));colorbar; colormap hot; axis image;

title('Mask');

pause(2);

close(h);


% -------------------------------------------------------------------------

% ESTIMATE D, alpha and Lm MAPS

%

% Ventilation images are filtered before the estimation (as images are very

% noisy for patient data sets, especially for large values of b)

k       = fspecial('gaussian',3,1);

h=figure;

for ip = 1:N(3)

   uTargetSmooth(:,:,ip) = imfilter(uTarget(:,:,ip),k);

   subplot(2,1,1); imagesc(abs(uTarget(:,:,ip)));colorbar; colormap hot; axis image

   title(['Original ventilation image, b ' num2str(ip)]);

   subplot(2,1,2); imagesc(abs(uTargetSmooth(:,:,ip)));colorbar; colormap hot; axis image;

   title('Filtered ventilation image');

   pause(1);

end

close(h);


% Estimate D and alpha using a STRETCHED EXPONENTIAL MODEL

options     = optimset('display','iter','Algorithm','levenberg-marquardt','Jacobian','on');

x0_D        = 0.2*ones(N(1:2));

x0_D        = x0_D(mask);

x0_a        = 0.8*ones(N(1:2));

x0_a        = x0_a(mask);

x0          = [x0_D; x0_a];

x           = lsqnonlin(@objVecPotExpJac,x0,[],[],options,...

   abs(uTargetSmooth(:,:,1)),abs(uTargetSmooth(:,:,2:end)),b(2:end),mask);


Drec0        = zeros(N(1:2));

Drec0(mask)  = abs(x(1:nnz(mask)));

alpharec0    = zeros(N(1:2));

alpharec0(mask)= abs(x(nnz(mask)+1:2*nnz(mask)));


% Apply a threshold to the estimated values

Drec0(abs(Drec0)>0.9)=0; Drec0(abs(Drec0)<0.05)=0;

alpharec0(abs(alpharec0)>1.3)=0; alpharec0(abs(alpharec0)<0.3)=0;


% ESTIMATE Lm map

tmp         = alpharec0;

tmp(logical(mask.*alpharec0>1)) = 0.9; % It doesnt work for values of alpha larger than 1

Lm0         = ComputeLmImage(N,Drec0,tmp);


h=figure;

subplot(2,2,1); imagesc(abs(Drec0)); colormap hot; axis image; colorbar; title('D fully sampled');caxis([0 0.9]);

subplot(2,2,2); imagesc(abs(alpharec0)); colormap hot; axis image; colorbar; title('alpha');caxis([0 1.3]);

subplot(2,2,3); imagesc(abs(Lm0)); colormap hot; axis image; colorbar; title('Lm');caxis([150 450]);

pause(2);

close(h);

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------

% COMPRESSED SENSING

%

% Pseudo-random undersampling pattern for all values of b

rand('state',1);


% Select parameters for Lustig's variable density pdf: radius, sparsity and

% P. Below we provide the set of paired sparsity and P values used in the

% paper:

% sparsity [0.5 0.25 0.20 0.15 0.1 0.07]

% P        [4   4    4    6    9   13]

radius      = 0.017;

DN          = [N(1),1];

sparsity    = 0.15;      % Corresponds to acceleration factor x7

P           = 6;


RAll    = zeros(N);

h=figure;

for ip = 1:N(3)

   % Loop across of values of b

   pdf     = genPDF(DN,P,sparsity,2,radius,0);

   temp    = genSampling_LIM(pdf,20,1);

   indR    = temp(:,1)==1;

   R       = zeros(N(1:2));

   R(indR,:)= 1;

   R(1,:)= 1;

   spy(R); title(['Undersampling b ' num2str(ip)]);

   RAll(:,:,ip) = R;

   data    = fft2(uTarget(:,:,ip)).*R;

   dataAll(:,:,ip) = data;

   pause(1);

end % ip

close(h);


% -------------------------------------------------------------------------

% ZERO-FILLING RECONSTRUCTION

u_fft       = ifft2(dataAll);


% Smooth ventilation images

for ip = 1:N(3)

   u_fft_s(:,:,ip) = imfilter(u_fft(:,:,ip),k);

end


% POTENTIAL MODEL

options     = optimset('display','iter','Algorithm','levenberg-marquardt','Jacobian','on');

x0_D        = 0.2*ones(N(1:2));

x0_D        = x0_D(mask);

x0_a        = 0.8*ones(N(1:2));

x0_a        = x0_a(mask);

x0          = [x0_D; x0_a];

x           = lsqnonlin(@objVecPotExpJac,x0,[],[],options,abs(u_fft_s(:,:,1)),abs(u_fft_s(:,:,2:end)),b(2:end),mask);


% D and A

Drecfft      = zeros(N(1:2));

Drecfft(mask)= abs(x(1:nnz(mask)));

alpharecfft  = zeros(N(1:2));

alpharecfft(mask)= abs(x(nnz(mask)+1:2*nnz(mask)));

Drecfft(abs(Drecfft)>0.9)=0; Drecfft(abs(Drecfft)<0.05)=0;

alpharecfft(abs(alpharecfft)>1.3)=0; alpharecfft(abs(alpharecfft)<0.3)=0;


% Lm

tmp         = alpharecfft;

tmp(logical(mask.*alpharecfft>1)) = 0.9;%!!!!1 Othewise, Lms doesnt work!!!

Lmfft       = ComputeLmImage(N,Drecfft,tmp);

Lmfft(isnan(Lmfft)) = 0;


h=figure;

subplot(2,2,1); imagesc(abs(Drecfft)); colormap hot; axis image; colorbar; title('D IFFT');caxis([0 0.9]);

subplot(2,2,2); imagesc(abs(alpharecfft)); colormap hot; axis image; colorbar; title('alpha');caxis([0 1.3]);

subplot(2,2,3); imagesc(abs(Lmfft)); colormap hot; axis image; colorbar; title('Lm');caxis([150 450]);

pause(2);

close(h);

% -------------------------------------------------------------------------

% STATIC Spatial Total Variation reconstruction using Split Bregman

% Code download from

% http://www.ece.rice.edu/~tag7/Tom_Goldstein/Split_Bregman.html

%

% Goldstein's spatial TV using the Split Bregman formulation

% u_tv = mrics(RAll(:,:,1),data(:,:,1), mu, lambda, gamma, nInner, nBreg);

%

% SpatialTVSB.m: same as mrics.m but it computes the solution error

% norm

mu          = 1;

lambda      = 1;

gamma       = 0.01;

nInner      = 1;

nBreg       = 800;

% Loop across all values of b to reconstruct ventilation images

for ip = 1:N(3)

   % The figure displayed shows (at several iteration numbers) the

   % reconstructed image (u), the dummy variable x that outputs the

   % shrinkage (for the gradient along x-direction) indicating the

   % sparsity as the number of nonzero coefficients, and the solution

   % error norm for all ventilation images

   [uThis,errThis] = SpatialTVSB(RAll(:,:,ip),dataAll(:,:,ip), mu, lambda, gamma, nInner, nBreg,uTargetSmooth(:,:,ip),mask);

   u_tv(:,:,ip) = uThis;

   err_tv(:,ip) = errThis;

end % ip


% Smooth ventilation images

for ip = 1:N(3)

   u_tv_s(:,:,ip) = imfilter(u_tv(:,:,ip),k);

end


% POTENTIAL MODEL

options     = optimset('display','iter','Algorithm','levenberg-marquardt','Jacobian','on');

x0_D        = 0.2*ones(N(1:2));

x0_D        = x0_D(mask);

x0_a        = 0.8*ones(N(1:2));

x0_a        = x0_a(mask);

x0          = [x0_D; x0_a];

x           = lsqnonlin(@objVecPotExpJac,x0,[],[],options,abs(u_tv_s(:,:,1)),abs(u_tv_s(:,:,2:end)),b(2:end),mask);


% D and A

Drectv      = zeros(N(1:2));

Drectv(mask)= abs(x(1:nnz(mask)));

alpharectv  = zeros(N(1:2));

alpharectv(mask)= abs(x(nnz(mask)+1:2*nnz(mask)));

Drectv(abs(Drectv)>0.9)=0; Drectv(abs(Drectv)<0.05)=0;

alpharectv(abs(alpharectv)>1.3)=0; alpharectv(abs(alpharectv)<0.3)=0;


% Lm

tmp         = alpharectv;

tmp(logical(mask.*alpharectv>1)) = 0.9;

Lmtv        = ComputeLmImage(N,Drectv,tmp);

Lmtv(isnan(Lmtv)) = 0;


h=figure;

subplot(2,2,1); imagesc(abs(Drectv)); colormap hot; axis image; colorbar; title('D TV');caxis([0 0.9]);

subplot(2,2,2); imagesc(abs(alpharectv)); colormap hot; axis image; colorbar; title('alpha');caxis([0 1.3]);

subplot(2,2,3); imagesc(abs(Lmtv)); colormap hot; axis image; colorbar; title('Lm');caxis([150 450]);

pause(2);

close(h);

% -------------------------------------------------------------------------

% SIDER

%

% Get mean estimated values of D and alpha for the model

Dest        = mean(Drectv(Drectv>0));

Alphaest    = mean(alpharectv(alpharectv>0));


mu      = 1;

lambda  = 1;

gamma   = 1e-2;

nBreg   = 800;

alpha   = 0.2;

beta    = 0.2;

% The figure displayed shows (at several iteration numbers) the

% reconstructed image (u), the dummy variable x that outputs the

% shrinkage (for the gradient along x-direction) and the dummy variable p

% (for the operator along b-direction), and the solution error norm for all

% ventilation images

[u_t,err_t] = SIDER(Dest,Alphaest,b,dataAll,RAll,N(1:3),mu,lambda,gamma,alpha,beta,nBreg,mask,uTargetSmooth);


% Smooth ventilation images

for ip = 1:N(3)

   u_t_s(:,:,ip) = imfilter(u_t(:,:,ip),k);

end


% POTENTIAL MODEL

options     = optimset('display','iter','Algorithm','levenberg-marquardt','Jacobian','on','TolFun',1e-06);

x0_D        = Dest*ones(N(1:2));

x0_D        = x0_D(mask);

x0_a        = 0.8*ones(N(1:2));

x0_a        = x0_a(mask);

x0          = [x0_D; x0_a];

x           = lsqnonlin(@objVecPotExpJac,x0,[],[],options,abs(u_t_s(:,:,1)),abs(u_t_s(:,:,2:end)),b(2:end),mask);


% D and A

Drect       = zeros(N(1:2));

Drect(mask)= abs(x(1:nnz(mask)));

alpharect   = zeros(N(1:2));

alpharect(mask)= abs(x(nnz(mask)+1:2*nnz(mask)));

Drect(abs(Drect)>0.9)=0; Drect(abs(Drect)<0.05)=0;

alpharect(abs(alpharect)>1.3)=0; alpharect(abs(alpharect)<0.3)=0;


% Lm

tmp         = alpharect;

tmp(logical(mask.*alpharect>1)) = 0.9;

Lmt         = ComputeLmImage(N,Drect,tmp);

Lmt(isnan(Lmt)) = 0;


h=figure;

subplot(2,2,1); imagesc(abs(Drect)); colormap hot; axis image; colorbar; title('D SIDER'); caxis([0 0.9]);

subplot(2,2,2); imagesc(abs(alpharect)); colormap hot; axis image; colorbar; title('alpha'); caxis([0 1.3]);

subplot(2,2,3); imagesc(abs(Lmt)); colormap hot; axis image; colorbar; title('Lm'); caxis([150 450]);

pause(2);

close(h);

% --------------------------------------------------------------------

% Plot solution error norm

figure; plot(mean(err_tv,2)); hold on; plot(mean(err_t,2),'r--');

xlabel('Iteration number'); ylabel('Solution error norm'); legend('TV','SIDER');

title('Solution error vs. iteration number (mean of ventilation images)');


% Ventilation images

figure;

subplot(3,2,1);

imagesc(abs(uTargetSmooth(:,:,1))); colormap hot; axis image; axis off; colorbar; title('u(b=0) fully sampled');

subplot(3,2,2);

imagesc(abs(uTargetSmooth(:,:,5))); colormap hot; axis image; axis off; colorbar; title('u(b=6.4) fully sampled');

subplot(3,2,3);

imagesc(abs(u_tv(:,:,1))); colormap hot; axis image; axis off; colorbar; title('u(b=0) TV');

subplot(3,2,4);

imagesc(abs(u_tv(:,:,5))); colormap hot; axis image; axis off; colorbar; title('u(b=6.4) TV');

subplot(3,2,5);

imagesc(abs(u_t(:,:,1))); colormap hot; axis image; axis off; colorbar; title('u(b=0) SIDER');

subplot(3,2,6);

imagesc(abs(u_t(:,:,5))); colormap hot; axis image; axis off; colorbar; title('u(b=6.4) SIDER');


figure;

subplot(3,3,1); imagesc(abs(Drec0)); colormap hot; axis image; axis off; colorbar; title('D fully sampled'); caxis([0 0.9]);

subplot(3,3,2); imagesc(abs(alpharec0)); colormap hot; axis image; axis off; colorbar; title('\alpha fully sampled'); caxis([0 1.3]);

subplot(3,3,3); imagesc(abs(Lm0)); colormap hot; axis image; axis off; colorbar; title('Lm fully sampled'); caxis([150 450]);

subplot(3,3,4); imagesc(abs(Drectv)); colormap hot; axis image; axis off; colorbar; title('D TV'); caxis([0 0.9]);

subplot(3,3,5); imagesc(abs(alpharectv)); colormap hot; axis image; axis off; colorbar; title('\alpha TV'); caxis([0 1.3]);

subplot(3,3,6); imagesc(abs(Lmtv)); colormap hot; axis image; axis off; colorbar; title('Lm TV');caxis([150 450]);

subplot(3,3,7); imagesc(abs(Drect)); colormap hot; axis image; axis off; colorbar; title('D SIDER');caxis([0 0.9]);

subplot(3,3,8); imagesc(abs(alpharect)); colormap hot; axis image; axis off; colorbar; title('\alpha SIDER');caxis([0 1.3]);

subplot(3,3,9); imagesc(abs(Lmt)); colormap hot; axis image; axis off; colorbar; title('Lm SIDER');caxis([150 450]);


pause(1);


end

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------

function [obj,JacThis] = objVecPotExpJac(x,A0,A,b,mask)

% Fit vntilation images to a stretch exponential model to get maps

% of diffusion (D) and heterogeneity index (alpha)

obj     = objVecPotExp(x,A0,A,b,mask);


JacThis = objVecPotJac(x,A0,A,b,mask);

%     end

end


function obj = objVecPotExp(x,A0,A,b,mask)

% Cost function for nonlinear LS

n           = size(A);

nm          = nnz(mask);

Dval        = x(1:nm);

alphaval    = x(nm+1:2*nm);

DThis       = zeros(n(1:2));

DThis(mask) = Dval;

alphaThis   = zeros(n(1:2));

alphaThis(mask) = alphaval;

obj         = [];

for iq = 1:size(A,3)

   tmp     = A0.*exp( -( (b(iq)*DThis).^alphaThis) ) - A(:,:,iq);

   obj     = [obj; (tmp(mask))];

end

end


function JacThis = objVecPotJac(x,A0,A,b,mask)

% Jacobian for nonlinear LS

nm          = nnz(mask);

Dval        = x(1:nm);

alphaval    = x(nm+1:2*nm);

JacThis     = [];

for ig  = 1:size(A,3)

   % Derivative wrt D

   A0e         = A0(mask).*exp(-((b(ig)*Dval).^alphaval));

   ba          = b(ig).^alphaval;

   Da          = Dval.^(alphaval-1);

   JacThisD    = -alphaval.*ba.*Da.*A0e;

   

   % Derivative wrt a

   logbD       = log(b(ig)*Dval);

   bDa         = (b(ig)*Dval).^alphaval;

   JacThisA    = -bDa.*logbD.*A0e;

   

   tmp         = [spdiags(JacThisD,0,nm,nm) spdiags(JacThisA,0,nm,nm)];

   JacThis     = [JacThis; tmp];

end

end


function [Lm,Lstd] = ComputeLmImage(N,Drec0,alpharec0)

% Compute maps of mean alveolar length (Lm) given maps of diffusion

% (D) and heterogeneity index (alpha)

%

Lm      = zeros(N(1:2));

Lstd    = zeros(N(1:2));

indThis = find( (Drec0 > 0).*(alpharec0 > 0) );

for ia = 1:length(indThis)

   [Lm_val,Lstd_val] = Lmdiststretchedexp(Drec0(indThis(ia)),alpharec0(indThis(ia)));

   Lm(indThis(ia))      = Lm_val;

   Lstd(indThis(ia))    = Lstd_val;

end % ia

end


function [Lm,Lmstd,Hk,ldd]=Lmdiststretchedexp(DDC,alpha,diftime, Do)

if nargin==3,

   Do=0.9;

end

if nargin==2,

   Do=0.88;

   diftime=1.6e-3;

end


D=0.01:0.001:Do;

beta=alpha;


b=0:0.5:10;


t0=1./DDC;

k=D;


betavect=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9];

betai=0.01:0.01:1;

B=[0.145 0.197 0.243 0.285 0.382 0.306 0.360 0.435 0.7];

C=[0.89 0.50 0.35 0.25 0 0.13 0.22 0.4015 0.33];


Bi=interp1(betavect,B,betai,'cubic');

Ci=interp1(betavect,C,betai,'cubic');


delta=beta.*(beta-0.5)./(1-beta);

fk=1+Ci(round(beta.*100)).*(k.*t0).^delta;


Hk=(t0.*Bi(round(beta.*100))./(k*t0).^((1-beta/2)/(1-beta))).*exp(-((1-beta).*beta.^(beta./(1-beta)))./(k.*t0).^(beta./(1-beta))).*fk;

Hk=Hk/sum(Hk);

ldd=1e4*sqrt(2*D*diftime);

Lm=sum(Hk.*ldd);

Lmstd=sqrt(sum(((ldd-Lm).^2).*Hk));

end


%

⛄ 运行结果

⛄ 参考文献

[1] Abascal J ,  Desco M ,  Parra-Robles J . Incorporation of prior knowledge of the signal behavior into the reconstruction to accelerate the acquisition of MR diffusion data[J]. arXiv e-prints, 2017.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关文章
|
12天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
16天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
19天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
21天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
21天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
21天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
21天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
40 3
|
28天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
36 3
|
27天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。