暂无个人介绍
能力说明:
了解变量作用域、Java类的结构,能够创建带main方法可执行的java应用,从命令行运行java程序;能够使用Java基本数据类型、运算符和控制结构、数组、循环结构书写和运行简单的Java程序。
阿里云技能认证
详细说明本教程翻译自OpenCV官方英文教程,按照使用度和难易度翻译,重新编写了大量原创内容,将不常用和较难的部分写成番外篇,浅显易懂,很easy的辣~每节的源码、图片和练习题答案均可在引用处找到
Python+OpenCV 教程2
上次聊完Python+OpenCV的基本元素-图片,就有同学直言简单~ 那么接下来我们学习打开摄像头捕获照片、播放本地视频、录制视频等。
学习获取和修改像素点的值,ROI感兴趣区域,通道分离合并等基本操作等。
如果你也有想分享的干货,可以登录天池实验室(notebook),包括赛题的理解、数据分析及可视化、算法模型的分析以及一些核心的思路等内容。
Python不支持读取oss的数据, 故所有调用 python Open(), os.path.exist() 等文件, 文件夹操作的函数的代码都无法执行。 如Scipy.misc.imread(), numpy.load() 等。
机器学习小白,还不快pick一下——【视觉与图像:阈值分割】
上干货!小天何止是为了解救可爱的“柠檬精”,高甜预警,这波【数据可视化】干货你要不要手速收藏!
Scikit-Learn(http://scikit-learn.org)是最流行的程序包之一,它为各种常用机器学习算法提供了高效版本。Scikit-Learn不仅因其干净、统一、管道命令式的API 而独具特色,而且它的在线文档又实用、又完整。
讲完Scikit-Learn的数据表示和评估器API的基础知识、简单线性回归,小天将在本文中为大家带来鸢尾花数据的分类、降维和聚类,还有手写数据的探索
现在对PyTorch的自动求导机制(autograd)有所了解,nn 依赖autograd来定义模型和区分它们。一个nn.Module包括layers和返回输出值的forword(input)方法。
“本文来自天池优秀选手yche,他针对落幕不久的第一届POLARDB数据库性能大赛两道赛题:实现一个简化、高效的kv存储引擎,支持Write、Read以及Range接口,整理了一套详细的比赛攻略,小天今天把这套冠军整理的baseline分享出来.
“上篇讲到:yche针对落幕不久的第一届POLARDB数据库性能大赛整理了一套详细的比赛攻略,(赛题:实现一个简化、高效的kv存储引擎,支持Write、Read以及Range接口),那么今天小天就要贡献出最核心的部分——关键代码~”
【鼠标绘图】详解
线性回归可以说是机器学习中最基本的问题类型了,这里就对线性回归的原理和算法做一个小结。
如果你也有想分享的干货,可以登录天池实验室(notebook),包括赛题的理解、数据分析及可视化、算法模型的分析以及一些核心的思路等内容。
对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。
有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。
再让我们回归一下本文开始的特征工程的思维导图,我们可以使用sklearn完成几乎所有特征处理的工作,而且不管是数据预处理,还是特征选择,抑或降维,它们都是通过某个类的方法fit_transform完成的。fit_transform要不只带一个参数:特征矩阵,要不带两个参数:特征矩阵加目标向量。
使用sklearn工具可以方便地进行特征工程和模型训练工作,在《使用sklearn做单机特征工程》中,我们最后留下了一些疑问:特征处理类都有三个方法fit、transform和fit_transform,fit方法居然和模型训练方法fit同名(不光同名,参数列表都一样),这难道都是巧合?
在这个教程,你将学习如何通过迁移学习训练神经网络。你可以在 cs231n notes 了解更多关于迁移学习的内容。
在解决机器学习问题时, 我们需要付出很多努力来准备数据, 为了使代码更具可读性, PyTorch提供了许多工具来使数据加载变得简单易行。在本教程中, 我们将要学习如何对 一个重要的数据集进行加载、预处理数据增强。
深度学习包括以巧妙的方式组合具有非线性的线性。非线性的引入允许强大的模型。在本节中,我们将使用这些核心组件,组成一个目标函数,并查看模型是如何训练的。
如果你也有想分享的干货,可以登录天池实验室(notebook),包括赛题的理解、数据分析及可视化、算法模型的分析以及一些核心的思路等内容。
本章中的PCA将所有的数据集都调入了内存,如果无法做到,就需要其他的方法来寻找其特征值。
如果你也有想分享的干货,可以登录天池实验室(notebook),包括赛题的理解、数据分析及可视化、算法模型的分析以及一些核心的思路等内容。
支持向量机(support vector machine,SVM)是非常强大、灵活的有监督学习算法,既可用于分类,也可用于回归。在本节中,我们将介绍支持向量机的原理,并用它解决分类问题。
如果你也有想分享的干货,可以登录天池实验室(notebook),包括赛题的理解、数据分析及可视化、算法模型的分析以及一些核心的思路等内容。
本文将介绍一种强大的算法——无参数算法随机森林。随机森林是一种集成方法,通过集成多个比较简单的评估器形成累积效果。这种集成方法的学习效果经常出人意料,往往能超过各个组成部分的总和;也就是说,若干评估器的多数投票(majority vote)的最终效果往往优于单个评估器投票的效果!
本节将介绍特征工程的一些常见示例:表示分类数据的特征、表示文本的特征和表示图像的特征。另外,还会介绍提高模型复杂度的衍生特征和处理缺失数据的填充方法。这个过程通常被称为向量化,因为它把任意格式的数据转换成具有良好特性的向量形式。
线性回归模型是解决回归任务的好起点。 你可能对线性回归模型最简单的形式(即对数据拟合一条直线)已经很熟悉了,不过经过扩展,这些模型可以对更复杂的数据行为进行建模。
朴素贝叶斯模型是一组非常简单快速的分类算法,通常适用于维度非常高的数据集。因为运行速度快,而且可调参数少,因此非常适合为分类问题提供快速粗糙的基本方案。
决策树(Decision Tree)算法主要用来处理分类问题,是最经常使用的数据挖掘算法之一。
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。
决策树算法原理(上)这篇里,我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法。对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。
Scikit-Learn决策树算法类库使用
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。
最全的PCA原理总结
由于我们的训练集有重复数据,这会改变数据的分布,因而训练结果会有估计偏差,因此,此种方法不是很常用,除非数据量真的很少,比如小于20个。
在本文中,将介绍数据湖的一些主要方面,帮助读者理解为什么它对企业非常重要。
这是一个计算架构层出不穷的时代,每种架构都是为了解决其面对的领域问题出现的,必然包含对其问题的特殊优化。通用性不是用户解决问题的出发点,而更多的是框架设计者的“一厢情愿”,用户关注的永远是领域问题。从这个意义上讲,面向领域的计算架构应该才是正确的方向。
专栏《图像分割模型》正式完结了。在本专栏中,我们从编解码结构入手,讲到解码器设计;从感受野,讲到多尺度融合;从CNN,讲到RNN与CRF;从2D分割,讲到3D分割;从语义分割到实例分割和全景分割。这篇文章我们就一起回顾一下这些网络结构。
目前,使用比较广泛的列式存储主要是 Apache Parquet 和 Apache ORC,Parquet 由谷歌的 Dremel 发展而来,由Twitter 贡献给社区,ORC 则是由 Hive 的 RC File 发展而来,从Hive项目中独立出来,二者目前都是比较活跃的列式存储项目。
冷启动问题同比于启动车辆,通常车正式开启之前需要有热车阶段,这个过程就是冷启动过程。冷启动在推荐系统也是常见的问题,大家知道类似于抖音、淘宝等工具,都会根据用户的兴趣去推荐内容,如果一个新用户进来,系统完全不清楚他的兴趣,该如何推荐呢?这就是本文要给大家介绍的内容。
简单来说就是用来在缺乏类似全局时钟或者全局时钟不可靠的分布式系统中来确定一种全局状态。
本文会带着大家一起来揭开 Flink SQL 核心功能的面纱(API上我们将尽可能的和Flink社区保持一致,这样才能够更好的融入开源的生态,所以我们将API叫做Flink SQL,而不是Blink SQL。