向量数据库:使用体验、大模型关注与AI时代的航道灯塔
随着人工智能的快速发展,作为开发者的我们,见证了AI在技术圈掀起的技术变革,向量数据库作为一种专门处理高维数据的数据库,近年来在AI领域备受开发者们的关注。向量数据库的特点是能够快速匹配相似内容,对于图像搜索、推荐算法等领域具有重要意义。但是我们需要认真思考一下,向量数据库是一时的浪花,还是能够成为AI时代的未来航标?那么本文就来简单聊聊向量数据库在AI时代的崛起和应用,并分析其前景是否仅限于当前的热潮,还是能够成为开发者不可或缺的工具,引领AI时代的新潮流。从实际应用的角度出发,通过结合实际项目经验,将对向量数据库的前景进行深入思考和讨论,深入剖析向量数据库的优势、挑战和前景,以期为读者提供
OpenCV(图像处理)-图片搜索
1.知识介绍
Opencv进行图片搜索需要的知识有:特征点匹配+单应性矩阵知识,特征点匹配作者前面文章有记录。
单应性矩阵:两个不同视角上的点所对应的单应性矩阵可以用同一个射影变换来表述可以简单理解为变换矩阵H,x1 = h*x2
AI时代新宠,向量数据库
这篇文章介绍了向量数据库在生成式人工智能应用和大语言模型发展中的重要性,并介绍了几种主流的向量数据库产品,包括Milvus、Pipecone、Chroma、Weaviate、pgvector等。这篇文章详细介绍了向量数据库的概念和主流产品,对于了解向量数据库在人工智能领域的应用具有很好的参考价值。转载来自知乎:https://zhuanlan.zhihu.com/p/664747312,很好的科普文,自己收藏用。