计算机视觉
包含图像分类、图像生成、人体人脸识别、动作识别、目标分割、视频生成、卡通画、视觉评价、三维视觉等多个领域

SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。

Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。

ConsisID:北大联合鹏城实验室等机构推出的文本到视频生成模型
ConsisID是由北京大学和鹏城实验室等机构联合推出的文本到视频生成模型,专注于保持视频中人物身份的一致性。该模型采用频率分解技术和免调优的Diffusion Transformer架构,能够在多个评估维度上超越现有技术,推动身份一致性视频生成技术的发展。

MagicDriveDiT:华为联合港中文等机构推出的自动驾驶高分辨率长视频生成方法
MagicDriveDiT是由华为联合港中文等机构推出的一种新型自动驾驶高分辨率长视频生成方法。该方法基于DiT架构,通过流匹配增强模型的可扩展性,并采用渐进式训练策略处理复杂场景。MagicDriveDiT能够生成高分辨率的长视频,提供对视频内容的精确控制,适用于自动驾驶系统的测试与验证、感知模型训练、场景重建与模拟以及数据增强等多个应用场景。

PersonaCraft:首尔国立大学推出的单参考图像生成多身份全身图像技术
PersonaCraft是由首尔国立大学推出的创新技术,能够从单一参考图像生成多个人物的逼真全身图像。该技术结合了扩散模型和3D人类建模,有效处理人物间的遮挡问题,并支持用户自定义身体形状调整,为多人图像合成树立了新标准。

HunyuanVideo:腾讯推出的开源视频生成模型,参数高达130亿
腾讯推出的开源视频生成模型HunyuanVideo,拥有130亿参数,是目前参数量最大的开源视频模型之一。该模型具备物理模拟、高文本语义还原度、动作一致性和电影级画质等特性,能生成带有背景音乐的视频,推动了视频生成技术的发展和应用。

EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。该模型采用非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度,同时保持高质量的分割结果。EfficientTAM在多个视频分割基准测试中表现出与SAM 2相当的性能,具有更快的处理速度和更少的参数,特别适用于移动设备上的视频对象分割应用。

GeneMAN:上海AI Lab联合北大等高校推出的3D人体模型创建框架
GeneMAN是由上海AI实验室、北京大学、南洋理工大学和上海交通大学联合推出的3D人体模型创建框架。该框架能够从单张图片中生成高保真度的3D人体模型,适用于多种应用场景,如虚拟试衣、游戏和娱乐、增强现实和虚拟现实等。

StableAnimator:复旦联合微软等机构推出的端到端身份一致性视频扩散框架
StableAnimator是由复旦大学、微软亚洲研究院、虎牙公司和卡内基梅隆大学联合推出的端到端身份一致性视频扩散框架。该框架能够根据一张参考图像和一系列姿态,直接合成高保真度且保持人物身份一致性的视频,无需任何后处理工具。本文详细介绍了StableAnimator的主要功能、技术原理以及如何运行该框架。

AnchorCrafter:中科院联合腾讯推出的AI虚拟主播带货视频制作技术
AnchorCrafter是由中科院和腾讯联合推出的一项AI虚拟主播带货视频制作技术。该技术基于扩散模型,能够自动生成高保真度的主播风格产品推广视频,通过整合人-物交互(HOI)技术,实现对物体外观和运动控制的高度还原。AnchorCrafter在物体外观保持、交互感知以及视频质量方面优于现有方法,为在线广告和消费者参与提供了新的可能性。

MVGenMaster:复旦联合阿里等实验室推出的多视图扩散模型
MVGenMaster是由复旦大学、阿里巴巴达摩院和湖潘实验室联合推出的多视图扩散模型,专注于新视角合成(NVS)任务。该模型通过整合3D先验信息,显著提升了NVS的泛化和3D一致性,并能从单一图像生成多达100个新视图。此外,研究团队还推出了包含160万场景的大型多视图图像数据集MvD-1M,以支持模型的训练和优化。

Magic Copy:开源的 AI 抠图工具,在浏览器中自动识别图像进行抠图
Magic Copy 是一款开源的 AI 抠图工具,支持 Chrome 浏览器扩展。它基于 Meta 的 Segment Anything Model 技术,能够自动识别图像中的前景对象并提取出来,简化用户从图片中提取特定元素的过程,提高工作效率。

Make-It-Animatable:中科大联合腾讯推出的自动生成即时动画准备资产
Make-It-Animatable是由中国科学技术大学和腾讯联合推出的数据驱动框架,能够在不到一秒内将任何3D人形模型转换为可用于动画的状态。该框架支持多种3D数据格式,并采用从粗到细的表示策略和结构感知建模,显著提升了动画准备的质量和速度。

iDP3:斯坦福大学联合多所高校推出的改进型3D视觉运动策略
iDP3是由斯坦福大学联合多所高校推出的改进型3D视觉运动策略,旨在提升人形机器人在多样化环境中的自主操作能力。该策略基于自我中心的3D视觉表征,无需精确相机校准和点云分割,显著提高了机器人在未见过的环境中的实用性和灵活性。

OminiControl:AI图像生成框架,实现图像主题控制和空间精确控制
OminiControl 是一个高度通用且参数高效的 AI 图像生成框架,专为扩散变换器模型设计,能够实现图像主题控制和空间精确控制。该框架通过引入极少量的额外参数(0.1%),支持主题驱动控制和空间对齐控制,适用于多种图像生成任务。

Fancy123:华中科技和华南理工推出的3D网格生成技术
Fancy123是由华中科技大学和华南理工大学联合推出的3D网格生成技术,能够从单张图片生成高质量的3D网格。该技术通过即插即用的变形技术,解决了多视图图像的局部不一致性,提高了网格对输入图像的保真度,并确保了高清晰度。Fancy123在定性和定量实验中表现出色,能够无缝集成到现有的单图像到3D的方法中。

SAM 2.1:Meta 开源的图像和视频分割,支持实时视频处理
SAM 2.1是由Meta(Facebook的母公司)推出的先进视觉分割模型,专为图像和视频处理设计。该模型基于Transformer架构和流式记忆设计,实现了实时视频处理,并引入了数据增强技术,提升了对视觉相似物体和小物体的识别能力。SAM 2.1的主要功能包括图像和视频分割、实时视频处理、用户交互式分割、多对象跟踪以及改进的遮挡处理能力。

Sketch2Lineart:AI绘画工具,自动将手绘草图转换成清晰的线条画
Sketch2Lineart是一款基于人工智能的绘画工具,能够自动将手绘草图转换成清晰的线条画。该工具支持多种功能,如草图转线稿、自动描述生成、细节调整和风格定制等,适用于艺术创作、产品设计、教育培训等多个领域。

Find3D:加州理工学院推出的3D部件分割模型
Find3D是由加州理工学院推出的3D部件分割模型,能够根据任意文本查询分割任意对象的任何部分。该模型利用强大的数据引擎自动从互联网上的3D资产生成训练数据,并通过对比训练方法训练出一个可扩展的3D模型。Find3D在多个数据集上表现出色,显著提升了平均交并比(mIoU),并能处理来自iPhone照片和AI生成图像的野外3D构建。

EchoMimicV2:阿里推出的开源数字人项目,能生成完整数字人半身动画
EchoMimicV2是阿里蚂蚁集团推出的开源数字人项目,能够生成完整的数字人半身动画。该项目基于参考图片、音频剪辑和手部姿势序列,通过音频-姿势动态协调策略生成高质量动画视频,确保音频内容与半身动作的一致性。EchoMimicV2不仅支持中文和英文驱动,还简化了动画生成过程中的复杂条件,适用于虚拟主播、在线教育、娱乐和游戏等多个应用场景。

LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型
LEOPARD是由腾讯AI Lab西雅图实验室推出的视觉语言模型,专为处理含有大量文本的多图像任务设计。该模型通过自适应高分辨率多图像编码模块和大规模多模态指令调优数据集,在多个基准测试中表现卓越,适用于自动化文档理解、教育和学术研究、商业智能和数据分析等多个应用场景。

ViewExtrapolator:南洋理工联合UCAS团队推出的新型视图合成方法
南洋理工大学与UCAS团队联合推出了一种新型视图合成方法——ViewExtrapolator。该方法基于稳定视频扩散(SVD)技术,能够在不进行微调的情况下,高效生成超出训练视图范围的新视角图像,显著减少伪影,提升视觉质量。ViewExtrapolator具有广泛的应用前景,尤其在虚拟现实、3D内容创建、电影制作等领域。

MVPaint:腾讯PCG联合多所高校共同推出的3D纹理生成框架
MVPaint是由腾讯PCG联合多所高校共同推出的3D纹理生成框架,基于同步多视角扩散技术,实现高分辨率、无缝且多视图一致的3D纹理生成。该框架包含三个核心模块:同步多视角生成、空间感知3D修补和UV细化,显著提升3D模型的纹理生成效果。

OneDiffusion:无缝支持双向图像合成和理解的开源扩散模型
OneDiffusion 是一个开源的扩散模型,能够无缝支持双向图像合成和理解。它基于统一的训练框架,支持多种任务,如文本到图像生成、条件图像生成和图像理解等。OneDiffusion 通过流匹配框架和序列建模技术,实现了高度的灵活性和可扩展性。
HART:麻省理工学院推出的自回归视觉生成模型
HART(Hybrid Autoregressive Transformer)是麻省理工学院推出的自回归视觉生成模型,能够直接生成1024×1024像素的高分辨率图像,质量媲美扩散模型。HART基于混合Tokenizer技术,显著提升了图像生成质量和计算效率,适用于数字艺术创作、游戏开发、电影和视频制作等多个领域。

LTX Video:Lightricks推出的开源AI视频生成模型
LTX Video是由Lightricks推出的开源AI视频生成模型,能够在4秒内生成5秒的高质量视频。该模型基于2亿参数的DiT架构,确保帧间平滑运动和结构一致性,支持长视频制作,适用于多种场景,如游戏图形升级和电子商务广告变体制作。

OmniBooth:华为诺亚方舟联合港科大推出的图像生成框架
OmniBooth是由华为诺亚方舟实验室和港科大研究团队联合推出的图像生成框架,支持基于文本提示或图像参考进行空间控制和实例级定制。该框架通过用户定义的掩码和相关联的文本或图像指导,精确控制图像中对象的位置和属性,提升文本到图像合成技术的可控性和实用性。
关于flux.1 loras的8个问题
Flux LoRA是一系列用于微调FLUX.1 AI模型的低阶适应模型,专为生成多样风格图像设计,如现实主义、动漫或艺术风格。LoRA通过调整模型权重实现特定美学或主题输出,无需大量再训练。Flux LoRA能创作从真实场景到幻想风光的各种图像,具体取决于选用的LoRA及输入提示。模型许可各不相同,使用前需确认授权范围。用户可通过ComfyUI等界面轻松集成LoRA模型。流行模型包括Flux Realism LoRA、Anime LoRA等。亦可利用自定义数据集训练个人化的LoRA。FLUX Lora提供在线免费试用。
一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研)
【7月更文挑战第2天】 💡💡💡创新点: 1)SPD-Conv特别是在处理低分辨率图像和小物体等更困难的任务时优势明显; 2)引入Wasserstein Distance Loss提升小目标检测能力; 3)YOLOv8中的Conv用cvpr2024中的DynamicConv代替;
YOLOv10实战:SPPF原创自研 | SPPF_attention,重新设计加入注意力机制 | NEU-DET为案列进行展开
【7月更文挑战第1天】 优点:为了利用不同的池化核尺寸提取特征的方式可以获得更多的特征信息,提高网络的识别精度; 如何优化:在此基础上加入注意力机制,能够在不同尺度上更好的、更多的获取特征信息,从而获取全局视角信息并减轻不同尺度大小所带来的影响; SPPF_attention,重新设计加入注意力机制 ,在NEU-DEU任务中mAP50从0.683提升至0.703;
YOLOv10实战:红外小目标实战 | 多头检测器提升小目标检测精度
本文改进: 在进行目标检测时,小目标会出现漏检或检测效果不佳等问题。YOLOv10有3个检测头,能够多尺度对目标进行检测,但对微小目标检测可能存在检测能力不佳的现象,因此添加一个微小物体的检测头,能够大量涨点,map提升明显; 多头检测器提升小目标检测精度,1)mAP50从0.666提升至0.677
ModelScope模型使用与EAS部署调用
本文以魔搭数据的模型为例,演示在DSW实例中如何快速调用模型,然后通过Python SDK将模型部署到阿里云PAI EAS服务,并演示使用EAS SDK实现对服务的快速调用,重点针对官方关于EAS模型上线后示例代码无法正常调通部分进行了补充。
modelscope调用的模型如何指定在特定gpu上运行?排除使用CUDA_VISIBLE_DEVICES环境变量
由于个人需要,家里有多张卡,但是我只想通过输入device号的方式,在单卡上运行模型。如果设置环境变量的话我的其他服务将会受影响。