HART:麻省理工学院推出的自回归视觉生成模型

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: HART(Hybrid Autoregressive Transformer)是麻省理工学院推出的自回归视觉生成模型,能够直接生成1024×1024像素的高分辨率图像,质量媲美扩散模型。HART基于混合Tokenizer技术,显著提升了图像生成质量和计算效率,适用于数字艺术创作、游戏开发、电影和视频制作等多个领域。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

高分辨率图像生成:HART能够直接生成1024×1024像素的高分辨率图像。
图像质量提升:基于混合Tokenizer技术,HART在图像重建和生成质量上超越传统自回归模型。
计算效率优化:在保持高图像质量的同时,显著提高计算效率,降低训练成本和推理延迟。

正文(附运行示例)

HART 是什么

HART-website.png

HART(Hybrid Autoregressive Transformer)是麻省理工学院研究团队推出的自回归视觉生成模型。该模型能够直接生成1024×1024像素的高分辨率图像,其生成质量可与扩散模型相媲美。HART的核心技术在于其混合Tokenizer,这种技术将自动编码器的连续潜在表示分解为离散token和连续token。离散token负责捕捉图像的主要结构,而连续token则专注于细节。

HART的轻量级残差扩散模块仅用3700万参数,大幅提升了计算效率。在MJHQ-30K数据集上,HART将重构FID从2.11降至0.30,生成FID从7.85降至5.38,提升了31%。此外,HART在吞吐量上比现有扩散模型提高了4.5-7.7倍,MAC降低6.9-13.4倍。

HART 的主要功能

  • 高分辨率图像生成:直接生成1024×1024像素的高分辨率图像,满足高质量视觉内容的需求。
  • 图像质量提升:基于混合Tokenizer技术,HART在图像重建和生成质量上超越传统的自回归模型,与扩散模型相媲美。
  • 计算效率优化:在保持高图像质量的同时,显著提高计算效率,降低训练成本和推理延迟。
  • 自回归建模:基于自回归方法,逐步生成图像,支持对生成过程进行更精细的控制。

HART 的技术原理

  • 混合Tokenizer:HART的核心是混合Tokenizer,将自动编码器的连续潜在表示分解为离散token和连续token。离散token负责捕捉图像的主要结构,连续token专注于细节。
  • 离散自回归模型:离散部分由一个可扩展分辨率的离散自回归模型建模,支持模型在不同分辨率下生成图像。
  • 轻量级残差扩散模块:连续部分由一个轻量级的残差扩散模块学习,该模块只有3700万个参数,有助于提高模型的效率。
  • 效率与性能平衡:HART在FID和CLIP分数上优于现有的扩散模型,在吞吐量上提高了4.5-7.7倍,MAC降低6.9-13.4倍,实现效率与性能的良好平衡。
  • 自回归生成:HART基于自回归方法,逐步生成图像,每一步都基于前一步的输出,支持模型在生成过程中逐步细化图像细节。

如何运行 HART

环境设置

首先,克隆HART的GitHub仓库并设置环境:

git clone https://github.com/mit-han-lab/hart
cd hart
conda create -n hart python=3.10
conda activate hart
conda install -c nvidia cuda-toolkit -y
pip install -e .
cd hart/kernels && python setup.py install

下载模型和Tokenizer

下载Qwen2-VL-1.5B-Instruct模型和HART tokenizer及模型:

git clone https://huggingface.co/mit-han-lab/Qwen2-VL-1.5B-Instruct
git clone https://huggingface.co/mit-han-lab/hart-0.7b-1024px

运行Gradio Demo

使用以下命令启动Gradio demo:

python app.py --model_path /path/to/model \
   --text_model_path /path/to/Qwen2 \
   --shield_model_path /path/to/ShieldGemma2B

命令行推理

  1. 使用单个提示生成图像:
python sample.py --model_path /path/to/model \
   --text_model_path /path/to/Qwen2 \
   --prompt "YOUR_PROMPT" \
   --sample_folder_dir /path/to/save_dir \
   --shield_model_path /path/to/ShieldGemma2B
  1. 使用多个提示生成图像:
python sample.py --model_path /path/to/model \
   --text_model_path /path/to/Qwen2 \
   --prompt_list [Prompt1, Prompt2, ..., PromptN] \
   --sample_folder_dir /path/to/save_dir \
   --shield_model_path /path/to/ShieldGemma2B

延迟基准测试

使用以下命令进行延迟基准测试:

python latency_profile.py --model_path /path/to/model \
   --text_model_path /path/to/Qwen2

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
2月前
|
人工智能 API
EvolveDirector:阿里联合南洋理工推出文本到图像生成模型的高效训练技术
EvolveDirector是由阿里巴巴和南洋理工大学联合推出的文本到图像生成模型的高效训练技术。该框架通过与高级模型的API交互获取数据对,并利用预训练的大型视觉语言模型(VLMs)动态优化训练数据集,显著减少了数据量和训练成本。EvolveDirector能够从多个高级模型中选择最佳样本进行学习,使最终训练出的模型在多个方面超越现有高级模型。
44 0
EvolveDirector:阿里联合南洋理工推出文本到图像生成模型的高效训练技术
|
20天前
|
人工智能 自然语言处理 物联网
AI Safeguard联合 CMU,斯坦福提出端侧多模态小模型
随着人工智能的快速发展,多模态大模型(MLLMs)在计算机视觉、自然语言处理和多模态任务中扮演着重要角色。
|
8月前
|
机器学习/深度学习 自然语言处理 算法
一文综述,未来已来 | 视觉和大语言模型的未来是什么?必然结连理实现多模态大模型
一文综述,未来已来 | 视觉和大语言模型的未来是什么?必然结连理实现多模态大模型
198 1
|
8月前
|
存储 自然语言处理 文字识别
MLLM首篇综述 | 一文全览多模态大模型的前世、今生和未来
MLLM首篇综述 | 一文全览多模态大模型的前世、今生和未来
2906 0
|
机器学习/深度学习 自然语言处理 自动驾驶
南洋理工大学最新视觉语言模型综述:预训练、迁移学习和知识蒸馏啥都有
南洋理工大学最新视觉语言模型综述:预训练、迁移学习和知识蒸馏啥都有
|
机器学习/深度学习 人工智能 自然语言处理
【计算机视觉】最新综述:南洋理工和上海AI Lab提出基于Transformer的视觉分割综述
近期,南洋理工大学和上海人工智能实验室几位研究人员写了一篇关于Transformer-Based的Segmentation的综述,系统地回顾了近些年来基于Transformer的分割与检测模型,调研的最新模型截止至今年6月!
|
人工智能 算法 数据可视化
LeCun世界模型首项研究来了:自监督视觉,像人一样学习和推理,已开源
LeCun世界模型首项研究来了:自监督视觉,像人一样学习和推理,已开源
226 0
|
机器学习/深度学习 存储 人工智能
NeurIPS 2022 | 中山大学HCP实验室在AIGC领域的新突破:有效表示多样化衣物的3D神经表示模型
NeurIPS 2022 | 中山大学HCP实验室在AIGC领域的新突破:有效表示多样化衣物的3D神经表示模型
135 0
|
机器学习/深度学习 人工智能 自然语言处理
CVPR 2022 | 视频Transformer自监督预训练新范式,复旦、微软云AI实现视频识别新SOTA
CVPR 2022 | 视频Transformer自监督预训练新范式,复旦、微软云AI实现视频识别新SOTA
246 0
|
机器学习/深度学习 人工智能
挑战人类认知推理新任务,MIT、UCLA、斯坦福联合提出新一代视觉推理数据集
挑战人类认知推理新任务,MIT、UCLA、斯坦福联合提出新一代视觉推理数据集
251 0

热门文章

最新文章