YOLOv10实战:SPPF原创自研 | SPPF_attention,重新设计加入注意力机制 | NEU-DET为案列进行展开

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 【7月更文挑战第1天】优点:为了利用不同的池化核尺寸提取特征的方式可以获得更多的特征信息,提高网络的识别精度;如何优化:在此基础上加入注意力机制,能够在不同尺度上更好的、更多的获取特征信息,从而获取全局视角信息并减轻不同尺度大小所带来的影响;SPPF_attention,重新设计加入注意力机制 ,在NEU-DEU任务中mAP50从0.683提升至0.703;

💡💡💡本文原创自研创新改进:

优点:为了利用不同的池化核尺寸提取特征的方式可以获得更多的特征信息,提高网络的识别精度。

如何优化:在此基础上加入注意力机制,能够在不同尺度上更好的、更多的获取特征信息从而获取全局视角信息并减轻不同尺度大小所带来的影响

💡💡💡SPPF_attention,重新设计加入注意力机制  ,在NEU-DEU任务中mAP50从0.683提升至0.703


image.gif

原文链接:

YOLOv10涨点改进:SPPF原创自研 | SPPF_attention,重新设计加入注意力机制,能够在不同尺度上更好的、更多的关注注意力特征信息-CSDN博客

1.YOLOv10介绍

image.gif

论文: https://arxiv.org/pdf/2405.14458

代码: GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection

摘要:在过去的几年里,由于其在计算成本和检测性能之间的有效平衡,YOLOS已经成为实时目标检测领域的主导范例。研究人员已经探索了YOLOS的架构设计、优化目标、数据增强策略等,并取得了显著进展。然而,对用于后处理的非最大抑制(NMS)的依赖妨碍了YOLOS的端到端部署,并且影响了推理延迟。此外,YOLOS中各部件的设计缺乏全面和彻底的检查,导致明显的计算冗余,限制了模型的性能。这导致次优的效率,以及相当大的性能改进潜力。在这项工作中,我们的目标是从后处理和模型架构两个方面进一步推进YOLOS的性能-效率边界。为此,我们首先提出了用于YOLOs无NMS训练的持续双重分配,该方法带来了有竞争力的性能和低推理延迟。此外,我们还介绍了YOLOS的整体效率-精度驱动模型设计策略。我们从效率和精度两个角度对YOLOS的各个组件进行了全面优化,大大降低了计算开销,增强了性能。我们努力的成果是用于实时端到端对象检测的新一代YOLO系列,称为YOLOV10。广泛的实验表明,YOLOV10在各种模型规模上实现了最先进的性能和效率。例如,在COCO上的类似AP下,我们的YOLOV10-S比RT-DETR-R18快1.8倍,同时具有2.8倍更少的参数和FLOPS。与YOLOV9-C相比,YOLOV10-B在性能相同的情况下,延迟减少了46%,参数减少了25%。

image.gif

1.1  C2fUIB介绍

为了解决这个问题,我们提出了一种基于秩的块设计方案,旨在通过紧凑的架构设计降低被证明是冗余的阶段复杂度。我们首先提出了一个紧凑的倒置块(CIB)结构,它采用廉价的深度可分离卷积进行空间混合,以及成本效益高的点对点卷积进行通道混合

C2fUIB只是用CIB结构替换了YOLOv8中 C2f的Bottleneck结构

实现代码ultralytics/nn/modules/block.py

image.gif

image.gif

class CIB(nn.Module):
    """Standard bottleneck."""
    def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = nn.Sequential(
            Conv(c1, c1, 3, g=c1),
            Conv(c1, 2 * c_, 1),
            Conv(2 * c_, 2 * c_, 3, g=2 * c_) if not lk else RepVGGDW(2 * c_),
            Conv(2 * c_, c2, 1),
            Conv(c2, c2, 3, g=c2),
        )
        self.add = shortcut and c1 == c2
    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv1(x) if self.add else self.cv1(x)
class C2fCIB(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""
    def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))

image.gif

1.2  PSA介绍

具体来说,我们在1×1卷积后将特征均匀地分为两部分。我们只将一部分输入到由多头自注意力模块(MHSA)和前馈网络(FFN)组成的NPSA块中。然后,两部分通过1×1卷积连接并融合。此外,遵循将查询和键的维度分配为值的一半,并用BatchNorm替换LayerNorm以实现快速推理。

实现代码ultralytics/nn/modules/block.py

image.gif

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8,
                 attn_ratio=0.5):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.key_dim = int(self.head_dim * attn_ratio)
        self.scale = self.key_dim ** -0.5
        nh_kd = nh_kd = self.key_dim * num_heads
        h = dim + nh_kd * 2
        self.qkv = Conv(dim, h, 1, act=False)
        self.proj = Conv(dim, dim, 1, act=False)
        self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
    def forward(self, x):
        B, _, H, W = x.shape
        N = H * W
        qkv = self.qkv(x)
        q, k, v = qkv.view(B, self.num_heads, -1, N).split([self.key_dim, self.key_dim, self.head_dim], dim=2)
        attn = (
            (q.transpose(-2, -1) @ k) * self.scale
        )
        attn = attn.softmax(dim=-1)
        x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + self.pe(v.reshape(B, -1, H, W))
        x = self.proj(x)
        return x
class PSA(nn.Module):
    def __init__(self, c1, c2, e=0.5):
        super().__init__()
        assert(c1 == c2)
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)
        
        self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
        self.ffn = nn.Sequential(
            Conv(self.c, self.c*2, 1),
            Conv(self.c*2, self.c, 1, act=False)
        )
        
    def forward(self, x):
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = b + self.attn(b)
        b = b + self.ffn(b)
        return self.cv2(torch.cat((a, b), 1))

image.gif

1.3 SCDown

OLOs通常利用常规的3×3标准卷积,步长为2,同时实现空间下采样(从H×W到H/2×W/2)和通道变换(从C到2C)。这引入了不可忽视的计算成本O(9HWC^2)和参数数量O(18C^2)。相反,我们提议将空间缩减和通道增加操作解耦,以实现更高效的下采样。具体来说,我们首先利用点对点卷积来调整通道维度,然后利用深度可分离卷积进行空间下采样。这将计算成本降低到O(2HWC^2 + 9HWC),并将参数数量减少到O(2C^2 + 18C)。同时,它最大限度地保留了下采样过程中的信息,从而在减少延迟的同时保持了有竞争力的性能。

实现代码ultralytics/nn/modules/block.py

class SCDown(nn.Module):
    def __init__(self, c1, c2, k, s):
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)
    def forward(self, x):
        return self.cv2(self.cv1(x))

image.gif

2.YOLOv10魔改提升精度

2.1 SPPF原创自研 | SPPF_attention

原文链接:

YOLOv10涨点改进:SPPF原创自研 | SPPF_attention,重新设计加入注意力机制,能够在不同尺度上更好的、更多的关注注意力特征信息-CSDN博客

2.1.1  如何创新优化SPPF

优点:为了利用不同的池化核尺寸提取特征的方式可以获得更多的特征信息,提高网络的识别精度。

如何优化:在此基础上加入注意力机制,能够在不同尺度上更好的、更多的获取特征信息,从而提高网络的识别精度。

原始结构                                                                    加入注意力机制

image.gif   image.gif

image.gif

2.2 NEU-DET数据集为案列进行对比实验

NEU-DET钢材表面缺陷共有六大类,一共1800张,

类别分别为:'crazing','inclusion','patches','pitted_surface','rolled-in_scale','scratches'

image.gif

2.3 实验结果分析

2.3.1 训练方式

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOv10
if __name__ == '__main__':
    model = YOLOv10('ultralytics/cfg/models/v10/yolov10n-EMA_attention.yaml')
    #model.load('yolov10n.pt') # loading pretrain weights
    model.train(data='data/NEU-DET.yaml',
                cache=False,
                imgsz=640,
                epochs=200,
                batch=16,
                close_mosaic=10,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )

image.gif

原始YOLOv10n结果如下:

原始mAP50为0.683

YOLOv10n summary (fused): 285 layers, 2696756 parameters, 0 gradients, 8.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:12<00:00,  1.27it/s]
                   all        486       1069      0.634      0.662      0.683      0.392
               crazing        486        149      0.409      0.248      0.298     0.0996
             inclusion        486        222      0.677      0.774      0.768      0.411
               patches        486        243      0.789      0.868      0.905      0.582
        pitted_surface        486        130      0.752      0.722      0.757      0.492
       rolled-in_scale        486        171      0.549      0.561      0.561      0.263
             scratches        486        154       0.63      0.797      0.807      0.505

image.gif

image.gif

2.3.2 SPPF原创自研 | SPPF_attention

实验结果如下:

mAP50从0.683提升至0.703

YOLOv10n-SPPF_attention summary (fused): 294 layers, 3223094 parameters, 0 gradients, 8.4 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 16/16 [00:10<00:00,  1.52it/s]
                   all        486       1069       0.66      0.653      0.703      0.394
               crazing        486        149      0.489      0.242      0.372       0.13
             inclusion        486        222      0.676      0.704       0.73      0.392
               patches        486        243      0.787      0.864      0.903      0.578
        pitted_surface        486        130      0.701      0.703      0.741      0.456
       rolled-in_scale        486        171      0.602      0.538      0.607      0.282
             scratches        486        154      0.705       0.87      0.865      0.524

image.gif

image.gif

原文链接:https://blog.csdn.net/m0_63774211/article/details/139848311

目录
相关文章
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】Polarized Self-Attention: 极化自注意力,双重注意力机制
YOLOv10引入了极化自注意(PSA)块,结合通道和空间注意力,降低信息损失。PSA通过极化过滤保持高分辨率,并用增强处理非线性分布。在2D姿态估计和分割任务上提升1-2点精度,相比基线提升2-4点。代码示例展示了PSA模块如何集成到模型中。更多配置详情见相关链接。
|
6月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
1233 8
YOLOv11改进策略【SPPF】| SimSPPF,简化设计,提高计算效率
|
机器学习/深度学习 编解码 测试技术
【YOLOv10改进-注意力机制】LSKNet(Large Selective Kernel Network ):空间选择注意力
YOLOv10专栏聚焦遥感目标检测,提出LSKNet,首个探索大型选择性核的模型。LSKNet利用LSKblock Attention动态调整感受野,处理不同目标的上下文。创新点还包括极化滤波和增强技术,提升信息保留和非线性输出。在HRSC2016等遥感基准上取得SOTA性能。LSKNet代码展示其网络结构,包括多阶段模块和注意力机制。详细配置和任务说明见相关链接。
|
9月前
|
机器学习/深度学习 人工智能 文字识别
ultralytics YOLO11 全新发布!(原理介绍+代码详见+结构框图)
本文详细介绍YOLO11,包括其全新特性、代码实现及结构框图,并提供如何使用NEU-DET数据集进行训练的指南。YOLO11在前代基础上引入了新功能和改进,如C3k2、C2PSA模块和更轻量级的分类检测头,显著提升了模型的性能和灵活性。文中还对比了YOLO11与YOLOv8的区别,并展示了训练过程和结果的可视化
14528 0
|
12月前
|
机器学习/深度学习 编解码 测试技术
【YOLOv8改进-SPPF】 Focal Modulation :使用焦点调制模块替代SPPF
YOLOv8专栏介绍了FocalNets,一种取代自注意力的新型模块,提升模型在图像分类、检测和分割任务中的性能。Focal Modulation包括局部聚焦、全局调制和多尺度处理,通过融合CNN和自注意力优点。代码展示了FocalModulation模块的实现。论文和代码已开源。在多个基准测试中,FocalNets超越了Swin等先进模型。
|
编解码 计算机视觉 网络架构
【YOLOv10改进- 特征融合NECK】BiFPN:加权双向特征金字塔网络
YOLOv10专栏探讨了目标检测的效率提升,提出BiFPN,一种带加权和自适应融合的双向特征金字塔网络,优化了多尺度信息传递。EfficientDet系列利用这些创新在效率与性能间取得更好平衡,D7模型在COCO测试集上达到55.1 AP。YOLOv8引入MPDIoU,结合BiFPN学习分支权重,提高检测精度。详情见[YOLOv10 创新改进](https://blog.csdn.net/shangyanaf/category_12712258.html)和相关文章。
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-卷积Conv】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题
YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。
|
机器学习/深度学习 计算机视觉
YOLOv10实战:红外小目标实战 | 多头检测器提升小目标检测精度
本文改进: 在进行目标检测时,小目标会出现漏检或检测效果不佳等问题。YOLOv10有3个检测头,能够多尺度对目标进行检测,但对微小目标检测可能存在检测能力不佳的现象,因此添加一个微小物体的检测头,能够大量涨点,map提升明显; 多头检测器提升小目标检测精度,1)mAP50从0.666提升至0.677
1541 3
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | Neck | 添加双向特征金字塔BiFPN【含二次独家创新】
💡【YOLOv8专栏】探索特征融合新高度!BiFPN优化版提升检测性能🔍。双向加权融合解决信息丢失痛点,统一缩放增强模型效率🚀。论文&官方代码直达链接,模块化教程助你轻松实践📝。立即阅读:[YOLOv8涨点全攻略](https://blog.csdn.net/m0_67647321/category_12548649.html)✨
|
机器学习/深度学习 计算机视觉
【机器学习】YOLOv10与YOLOv8分析
【机器学习】YOLOv10与YOLOv8分析
1936 6

热门文章

最新文章