LEOPARD:腾讯AI Lab西雅图实验室推出的视觉语言模型

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: LEOPARD是由腾讯AI Lab西雅图实验室推出的视觉语言模型,专为处理含有大量文本的多图像任务设计。该模型通过自适应高分辨率多图像编码模块和大规模多模态指令调优数据集,在多个基准测试中表现卓越,适用于自动化文档理解、教育和学术研究、商业智能和数据分析等多个应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

模型设计:LEOPARD专为处理文本丰富的多图像任务设计,具备自适应高分辨率多图像编码能力。
技术特点:整合多模态大型语言模型架构,利用大规模多模态指令调优数据集进行训练。
应用场景:适用于自动化文档理解、教育和学术研究、商业智能和数据分析等多个领域。

正文

LEOPARD 是什么

公众号: 蚝油菜花 - Leopard

LEOPARD是腾讯AI Lab西雅图实验室推出的视觉语言模型,专为理解和处理含有大量文本的多图像任务设计。该模型通过两个主要技术创新来实现其功能:一是策划约一百万条专门针对文本丰富、多图像场景的高质量多模态指令调优数据集;二是开发自适应高分辨率多图像编码模块,动态优化视觉序列长度分配。

LEOPARD在多个基准测试中展现卓越的性能,特别是在需要理解单个图像内容及跨多个视觉输入进行推理的复杂任务中表现出色。

LEOPARD 的主要功能

  • 处理文本丰富的多图像任务:用于理解和处理包含大量文本信息的多图像场景,如幻灯片、扫描文档和网页截图等。
  • 跨图像推理:模型能理解单个图像的内容,在多个图像间进行逻辑推理和关系建立。
  • 高分辨率图像处理:基于自适应高分辨率多图像编码模块,能有效处理高分辨率图像,保持文本和细节的清晰度。
  • 动态视觉序列长度优化:根据输入图像的原始纵横比和分辨率动态优化视觉序列长度,平衡图像细节和模型处理能力。
  • 多模态指令调优:用大规模多模态指令调优数据集,能针对复杂的视觉语言任务进行优化。

LEOPARD 的技术原理

  • 多模态大型语言模型(MLLM):基于MLLM架构,整合视觉编码器、视觉语言连接器和语言模型,处理视觉和文本信息。
  • 数据集构建:构建LEOPARD-INSTRUCT数据集,包含约一百万条针对文本丰富、多图像场景的指令,用在模型训练和优化。
  • 自适应高分辨率编码:基于自适应策略,根据输入图像的特性动态调整视觉特征序列,适应模型的序列长度限制。
  • 像素洗牌技术:应用像素洗牌操作,将长视觉特征序列无损压缩成更短的序列,便于模型处理更多的高分辨率图像。
  • 图像分割:将高分辨率图像分割成多个子图像,以便独立处理并保留细节,然后将视觉特征与文本信息一起输入到语言模型中。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
2天前
|
存储 XML 自然语言处理
信息检索和信息提取的区别 原文出自[易百教程] 转载请保留原文链接: https://www.yiibai.com/geek/331046
提取的意思是 “取出”,检索的意思是 “取回”。信息检索是返回与用户特定查询或兴趣领域相关的信息。而信息提取则更多地是从一组文档或信息中提取一般知识(或关系)。信息提取是获取数据并从中提取结构化信息的标准过程,以便将其用于各种目的,其中一个目的可能是搜索引擎。
42 24
|
7月前
|
人工智能 自动驾驶 安全
破壁人AI百度:科技公司反内卷的典型样本
互联网整个行业都在陷入被动且尴尬的局面。去年开始流行的“内卷”一词,恰如其分的描述了互联网的现状,比如抖音开始做外卖,微信强推视频号,一直硝烟弥漫的电商市场,更是激战在社区团购上。 内卷背后也有人感慨,互联网到了尽头。支撑这一论述的是,移动互联网的人口红利已经消失,几款国民型APP用户增长都固定在了10亿这个级别,只能依靠自然人口的增长和迁移。
54 0
单模和多模光纤电缆的区别 原文出自[易百教程] 转载请保留原文链接: https://www.yiibai.com/geek/330968
光纤电缆是基于光可以通过全内反射被限制在弯曲的玻璃棒内这一理念。
单模和多模光纤电缆的区别 原文出自[易百教程] 转载请保留原文链接: https://www.yiibai.com/geek/330968
|
2天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
2天前
|
关系型数据库 MySQL Java
Servlet+MySQL增删改查 原文出自[易百教程] 转载请保留原文链接: https://www.yiibai.com/geek/1391
对于任何项目开发,创建,读取,更新和删除(CRUD)记录操作是应用程序的一个最重要部分。
|
2天前
|
人工智能 测试技术 Apache
SmolVLM:Hugging Face推出的轻量级视觉语言模型
SmolVLM是Hugging Face推出的轻量级视觉语言模型,专为设备端推理设计。以20亿参数量,实现了高效内存占用和快速处理速度。SmolVLM提供了三个版本以满足不同需求,并完全开源,所有模型检查点、VLM数据集、训练配方和工具均在Apache 2.0许可证下发布。
22 7
SmolVLM:Hugging Face推出的轻量级视觉语言模型
|
2天前
|
机器学习/深度学习 人工智能 算法
Optima:清华联合北邮推出优化通信效率和任务有效性的训练框架
Optima是由清华大学和北京邮电大学联合推出的一个优化通信效率和任务有效性的训练框架。该框架通过迭代生成、排名、选择和训练范式,显著提高了基于大型语言模型(LLM)的多智能体系统(MAS)的通信效率和任务效果。Optima不仅减少了令牌使用,还为改进推理时间扩展法则提供了新的可能性。
19 6
Optima:清华联合北邮推出优化通信效率和任务有效性的训练框架
|
2天前
|
人工智能 测试技术 计算机视觉
LongLLaVA:香港中文大学推出的多模态上下文混合架构大语言模型
LongLLaVA是由香港中文大学推出的多模态大型语言模型,采用混合架构,结合Mamba和Transformer模块,旨在高效处理大量图像数据。该模型能够在单个A100 80GB GPU上处理多达1000张图像,通过2D池化技术压缩图像token,显著降低计算成本,同时保留关键的空间关系信息。LongLLaVA在视频理解、高分辨率图像分析和多模态代理等应用场景中展现出卓越的性能。
18 5
LongLLaVA:香港中文大学推出的多模态上下文混合架构大语言模型
|
2天前
|
人工智能 自然语言处理 并行计算
EchoMimicV2:阿里推出的开源数字人项目,能生成完整数字人半身动画
EchoMimicV2是阿里蚂蚁集团推出的开源数字人项目,能够生成完整的数字人半身动画。该项目基于参考图片、音频剪辑和手部姿势序列,通过音频-姿势动态协调策略生成高质量动画视频,确保音频内容与半身动作的一致性。EchoMimicV2不仅支持中文和英文驱动,还简化了动画生成过程中的复杂条件,适用于虚拟主播、在线教育、娱乐和游戏等多个应用场景。
30 5
EchoMimicV2:阿里推出的开源数字人项目,能生成完整数字人半身动画
|
机器学习/深度学习 人工智能 算法
合并DeepMind和Google Brain,谷歌迎来AI新时代
合并DeepMind和Google Brain,谷歌迎来AI新时代
132 0
合并DeepMind和Google Brain,谷歌迎来AI新时代

热门文章

最新文章