EfficientTAM:Meta AI推出的视频对象分割和跟踪模型

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。该模型采用非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度,同时保持高质量的分割结果。EfficientTAM在多个视频分割基准测试中表现出与SAM 2相当的性能,具有更快的处理速度和更少的参数,特别适用于移动设备上的视频对象分割应用。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 模型简介:EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。
  2. 技术特点:采用非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度。
  3. 应用场景:特别适用于移动设备上的视频对象分割应用,如移动视频编辑、视频监控、增强现实和自动驾驶等。

正文

EfficientTAM 是什么

公众号: 蚝油菜花 - EfficientTAM

EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。该模型基于非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度,同时保持高质量的分割结果。EfficientTAM在多个视频分割基准测试中表现出与SAM 2相当的性能,具有更快的处理速度和更少的参数,特别适用于移动设备上的视频对象分割应用。

EfficientTAM的设计理念是通过简化模型结构和优化计算效率,使其能够在资源受限的设备上实现实时视频处理。这不仅提高了模型的实用性,还为移动设备上的视频分析任务提供了新的解决方案。

EfficientTAM 的主要功能

  • 视频对象分割:EfficientTAM能从视频帧中分割出感兴趣的对象。
  • 跟踪任何物体:模型能跟踪视频中的多个对象。
  • 轻量化设计:特别优化模型大小和计算效率,使其在资源受限的设备上,如智能手机,进行实时视频处理。
  • 高质量结果:模型轻量化,仍然能产生高质量的分割结果,满足高精度应用的需求。
  • 低延迟处理:能在保持低延迟的同时进行复杂的视频分析任务。

EfficientTAM 的技术原理

  • 非层次化Vision Transformer (ViT):用简单的、非层次化的ViT作为图像编码器,与传统的多阶段图像编码器相比,ViT提供了更高效的特征提取。
  • 高效记忆模块:引入高效的记忆模块,存储和利用过去帧的信息辅助当前帧的分割任务,同时减少内存和计算复杂度。
  • 记忆交叉注意力机制:EfficientTAM提出一种基于记忆空间嵌入的局部性的高效交叉注意力机制,有助于减少在交叉注意力计算中的参数数量和计算量。
  • 利用局部性:基于记忆空间嵌入的强局部性,通过平均池化创建记忆空间嵌入的粗略表示,减少计算量而不失准确性。
  • 模型训练和优化:EfficientTAM在SA-1B和SA-V数据集上进行训练,针对视频对象分割和跟踪任务进行优化,并在多个视频分割基准上进行评估,确保模型的泛化能力和实用性。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
40 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
4天前
|
机器学习/深度学习 人工智能 编解码
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
VideoVAE+ 是香港科技大学推出的先进跨模态视频变分自编码器,通过时空分离压缩机制和文本指导,实现了高效视频压缩与精准重建。
31 7
VideoVAE+:AI 生成视频高保真重建和跨模态重建工具,基于文本信息指导视频重建,提升视频细节质量
|
6天前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
27 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
15天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
83 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
19天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
65 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
21天前
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
51 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
85 7
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
1天前
|
人工智能 Python
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
ImBD是一款由复旦大学、华南理工大学等机构联合推出的AI内容检测器,能够快速识别机器修订文本,适用于多种场景,显著提升检测性能。
18 6
ImBD:复旦联合华南理工推出 AI 内容检测模型,快速辨别文本内容是否为 AI 生成
|
19天前
|
人工智能 小程序 API
【一步步开发AI运动小程序】十七、如何识别用户上传视频中的人体、运动、动作、姿态?
【云智AI运动识别小程序插件】提供人体、运动、姿态检测的AI能力,支持本地原生识别,无需后台服务,具有速度快、体验好、易集成等优点。本文介绍如何使用该插件实现用户上传视频的运动识别,包括视频解码抽帧和人体识别的实现方法。
|
12天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。

热门文章

最新文章