StableAnimator:复旦联合微软等机构推出的端到端身份一致性视频扩散框架

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: StableAnimator是由复旦大学、微软亚洲研究院、虎牙公司和卡内基梅隆大学联合推出的端到端身份一致性视频扩散框架。该框架能够根据一张参考图像和一系列姿态,直接合成高保真度且保持人物身份一致性的视频,无需任何后处理工具。本文详细介绍了StableAnimator的主要功能、技术原理以及如何运行该框架。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 身份保持的视频合成:StableAnimator能够根据提供的参考图像和姿态序列,合成保持人物身份一致性的视频内容。
  2. 无需后处理:与传统的动画模型不同,StableAnimator无需依赖任何后处理工具,即可生成高质量动画。
  3. 高保真度:框架直接生成的视频具有高保真度,细节丰富,接近真实世界的人物动态和外观。

正文(附运行示例)

StableAnimator 是什么

公众号: 蚝油菜花 - StableAnimator

StableAnimator是由复旦大学、微软亚洲研究院、虎牙公司和卡内基梅隆大学共同推出的端到端高质量身份保持视频扩散框架。该框架能够根据一张参考图像和一系列姿态,直接合成高保真度且保持人物身份一致性的视频,无需任何后处理工具。StableAnimator框架基于计算图像和面部嵌入、用全局内容感知面部编码器优化面部信息、引入分布感知ID适配器减少时间层干扰,在推理阶段采用基于Hamilton-Jacobi-Bellman方程的优化方法提升面部质量。

StableAnimator 的主要功能

  • 身份保持的视频合成:StableAnimator能根据提供的参考图像和姿态序列,合成保持人物身份一致性的视频内容。
  • 无需后处理:与传统的动画模型不同,StableAnimator无需依赖任何后处理工具,即可生成高质量动画。
  • 高保真度:框架直接生成的视频具有高保真度,细节丰富,接近真实世界的人物动态和外观。
  • 端到端框架:作为一个端到端的视频扩散框架,StableAnimator集成训练和推理模块,确保在整个动画生成过程中保持身份一致性。

StableAnimator 的技术原理

  • 图像和面部嵌入:StableAnimator使用现成的提取器分别计算图像和面部嵌入,为后续的身份保持提供基础特征。
  • 全局内容感知面部编码器:基于与图像嵌入的交互,面部编码器能进一步优化面部特征,增强模型对参考图像全局布局的感知能力。
  • 分布感知ID适配器:这一新颖组件能防止由于时间层引起的干扰,同时基于对齐操作保留身份信息,确保视频帧间的身份一致性。
  • Hamilton-Jacobi-Bellman (HJB) 方程优化:在推理阶段,基于HJB方程进行面部优化,进一步增强面部质量。基于与扩散去噪过程相结合,用优化路径引导模型朝着最佳的身份一致性方向发展。
  • 集成到扩散去噪过程:HJB方程的解决方案被集成到扩散去噪过程中,让去噪路径受到约束,有利于身份信息的保持。
  • 多路径处理:参考图像基于三个路径处理:VAE编码、CLIP图像编码和Arcface面部编码,将信息用在调制合成外观和确保身份一致性。

如何运行 StableAnimator

环境设置

推荐使用Python 3+和PyTorch 2.x,验证环境为Nvidia V100 GPU。建议使用Docker镜像进行环境配置。

pip install -r requirements.txt
conda install xformers -c xformers -y
pip install onnxruntime-gpu==1.17.0 --index-url=https://pkgs.dev.azure.com/onnxruntime/onnxruntime/_packaging/onnxruntime-cuda-12/pypi/simple

下载权重

如果遇到Hugging Face连接问题,可以使用镜像端点:

export HF_ENDPOINT=https://hf-mirror.com

下载权重:

cd StableAnimator/
mkdir checkpoints

权重组织结构:

checkpoints/
├── DWPose
│   ├── dw-ll_ucoco_384.onnx
│   └── yolox_l.onnx
├──Animation
│   ├── pose_net.pth
│   ├── face_encoder.pth
│   └── unet.pth
├──SVD
│   └── stable-video-diffusion-img2vid-xt
│       ├── feature_extractor
│       ├── image_encoder
│       ├── scheduler
│       ├── unet
│       ├── vae
│       ├── model_index.json
│       ├── svd_xt.safetensors
│       └── svd_xt_image_decoder.safetensors

模型推理

示例配置文件command_basic_infer.sh

bash command_basic_infer.sh

生成高质量MP4文件:

cd animated_images
ffmpeg -framerate 20 -i frame_%d.png -c:v libx264 -crf 10 -pix_fmt yuv420p /path/animation.mp4

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
24天前
|
自然语言处理 测试技术
社区供稿 | 引入隐式模型融合技术,中山大学团队推出 FuseChat-3.0
在大语言模型(LLM)领域,结合多个模型的优势以提升单个模型的能力已成为一大趋势。然而,以往的模型融合方法例如 FuseLLM[1], FuseChat-1.0/2.0[2] 等存在词表对齐困难、效率低下等问题。
社区供稿 | 引入隐式模型融合技术,中山大学团队推出 FuseChat-3.0
|
1月前
|
机器学习/深度学习 人工智能 达摩院
MVGenMaster:复旦联合阿里等实验室推出的多视图扩散模型
MVGenMaster是由复旦大学、阿里巴巴达摩院和湖潘实验室联合推出的多视图扩散模型,专注于新视角合成(NVS)任务。该模型通过整合3D先验信息,显著提升了NVS的泛化和3D一致性,并能从单一图像生成多达100个新视图。此外,研究团队还推出了包含160万场景的大型多视图图像数据集MvD-1M,以支持模型的训练和优化。
88 27
MVGenMaster:复旦联合阿里等实验室推出的多视图扩散模型
|
1月前
|
人工智能
GenMAC:港大、清华联合微软推出文本到视频生成的多代理协作框架
GenMAC是由香港大学、清华大学和微软研究院联合推出的文本到视频生成的多代理协作框架。该框架通过任务分解、迭代循环和多代理协作,解决了复杂场景生成问题,显著提高了视频生成的准确性和文本对齐度。
40 5
GenMAC:港大、清华联合微软推出文本到视频生成的多代理协作框架
|
2月前
|
人工智能 并行计算 PyTorch
ViewExtrapolator:南洋理工联合UCAS团队推出的新型视图合成方法
南洋理工大学与UCAS团队联合推出了一种新型视图合成方法——ViewExtrapolator。该方法基于稳定视频扩散(SVD)技术,能够在不进行微调的情况下,高效生成超出训练视图范围的新视角图像,显著减少伪影,提升视觉质量。ViewExtrapolator具有广泛的应用前景,尤其在虚拟现实、3D内容创建、电影制作等领域。
45 1
ViewExtrapolator:南洋理工联合UCAS团队推出的新型视图合成方法
|
2月前
|
人工智能 数据处理 异构计算
LongRAG:智谱联合清华和中科院推出的双视角鲁棒检索框架
LongRAG是由智谱、清华大学和中国科学院联合推出的双视角鲁棒检索增强生成框架,专为长文本问答设计。该框架通过混合检索器、LLM增强信息提取器、CoT引导过滤器和LLM增强生成器等组件,有效解决了长文本问答中的全局上下文理解和事实细节识别难题。LongRAG在多个数据集上表现优异,提供了自动化微调数据构建管道,增强了系统的“指令跟随”能力和领域适应性。
75 1
LongRAG:智谱联合清华和中科院推出的双视角鲁棒检索框架
|
6月前
|
安全 TensorFlow 算法框架/工具
开源大模型与闭源大模型,你更看好哪一方?
开源大模型与闭源大模型,你更看好哪一方?
110 3
|
机器学习/深度学习 自然语言处理 测试技术
社区供稿 | 封神榜团队揭秘大模型训练秘密:以数据为中心
近一年来,各种各样的开源和闭源的大语言模型,不断在多个中文英文的测试基准中刷新着记录。然而,大语言模型的开发仍然面临诸多挑战,比如从头开始训练大语言模型的高昂成本,以及继续预训练导致的灾难性遗忘等等。尽管许多研究致力于解决这些问题,但一个重要而且实际的限制是,许多研究过于追求扩大模型规模,没有全面分析和优化预训练数据在训练大语言模型过程中的使用。
|
6月前
|
机器学习/深度学习 人工智能 安全
「随笔」开源大模型与闭源大模型,你更看好哪一方?
开源与闭源AI模型各有利弊。开源促进创新、透明度和学习,但可能有安全风险和质量不一;闭源则保护IP、提供定制服务,但可能限制创新和透明度。混合策略,如基础开源加高级服务闭源,成为平衡点。选择取决于创新、产权、透明度和商业目标。
212 0
|
8月前
|
人工智能 安全 算法
【平衡点:解锁中国大模型开源闭源的新时代】关于大模型是否开源的分析
本文探讨了开源与闭源软件在大模型技术发展中的角色,深入比较了两者在质量、安全、产业化、适应性和可靠性等方面的优缺点。开源软件得益于全球开发者社区,通常在创新和适应性上表现出色,但安全性和质量可能因分散的开发而有所波动。闭源软件则在代码质量和安全性上有一定优势,但可能限制了产业的协作与创新。 在商业模式方面,开源通常依赖服务和支持盈利,闭源则通过软件授权和订阅服务获利。开源模式的市场竞争更激烈,闭源模式则更注重市场份额和控制。企业需要根据自身情况选择合适的战略,有些可能会采用
258 1
|
8月前
|
机器学习/深度学习 自然语言处理 算法
开源与闭源:大模型发展的双重走向
开源与闭源:大模型发展的双重走向

热门文章

最新文章