OneDiffusion:无缝支持双向图像合成和理解的开源扩散模型

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介: OneDiffusion 是一个开源的扩散模型,能够无缝支持双向图像合成和理解。它基于统一的训练框架,支持多种任务,如文本到图像生成、条件图像生成和图像理解等。OneDiffusion 通过流匹配框架和序列建模技术,实现了高度的灵活性和可扩展性。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

功能:支持文本到图像生成、条件图像生成和图像理解。
技术:采用流匹配框架和序列建模技术。
应用:广泛应用于艺术创作、广告、游戏开发等领域。

正文

OneDiffusion 是什么

公众号: 蚝油菜花 - OneDiffusion

OneDiffusion 是由 AI2 推出的多功能大规模扩散模型,能够无缝支持双向图像合成和理解。它涵盖了文本到图像生成、条件图像生成、图像理解等多种任务。OneDiffusion 通过将所有条件和目标图像建模为序列“视图”进行训练,实现了在推理时任意帧作为条件图像的能力。

OneDiffusion 的统一训练框架、可扩展性和对多任务的支持,使其成为一种通用的视觉模型解决方案。

OneDiffusion 的主要功能

  • 文本到图像合成:从文本提示生成高质量、逼真的图像。
  • 条件图像生成:基于输入图像(如深度图、姿态图)生成新图像。
  • 图像理解:执行如深度估计、姿态估计和图像分割等任务。
  • 多视图生成:从单一图像生成多个视角的一致视图。
  • 即时个性化:用序列图像输入进行个性化生成。
  • ID定制:基于个人身份信息进行图像定制和生成。
  • 零样本高分辨率生成:即使在训练中未遇到高分辨率,也能生成高分辨率图像。

OneDiffusion 的技术原理

  • 流匹配框架:使用流匹配(Flow matching)框架训练连续时间生成模型,学习时间依赖的向量场转换概率分布。
  • 序列建模:将所有条件和目标图像建模为一系列“视图”,在训练时作为序列处理,每个视图带有不同噪声水平。
  • 灵活的框架:在推理时,任何视图都能用作条件输入或被设置为噪声,生成输出图像。
  • 统一训练框架:基于统一的训练框架,去除对特定架构的需求,支持可扩展的多任务训练,并能适应任意分辨率。
  • 噪声调度:在训练过程中,独立采样每个视图的时间变量和高斯噪声,实现不同噪声水平的视图。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
机器学习/深度学习 编解码 算法
了解与对比主流背景去除工具
本文对比了几款主流的背景去除工具,包括Remove.bg、Removal.ai、RMBG 2.0、Imagga和Wondershare Pixcut,重点介绍了RMBG 2.0这款开源工具的性能、优势及挑战,适用于不同需求的用户选择。
|
11月前
|
人工智能
Fancy123:华中科技和华南理工推出的3D网格生成技术
Fancy123是由华中科技大学和华南理工大学联合推出的3D网格生成技术,能够从单张图片生成高质量的3D网格。该技术通过即插即用的变形技术,解决了多视图图像的局部不一致性,提高了网格对输入图像的保真度,并确保了高清晰度。Fancy123在定性和定量实验中表现出色,能够无缝集成到现有的单图像到3D的方法中。
160 5
Fancy123:华中科技和华南理工推出的3D网格生成技术
|
4月前
|
机器学习/深度学习 存储 并行计算
大模型推理显存优化系列(3):FlowMLA——面向高吞吐的DP MLA零冗余显存优化
本文将介绍蚂蚁集团ASystem团队在推理显存优化上的新工作FlowMLA
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
Sketch2Lineart:AI绘画工具,自动将手绘草图转换成清晰的线条画
Sketch2Lineart是一款基于人工智能的绘画工具,能够自动将手绘草图转换成清晰的线条画。该工具支持多种功能,如草图转线稿、自动描述生成、细节调整和风格定制等,适用于艺术创作、产品设计、教育培训等多个领域。
1042 60
Sketch2Lineart:AI绘画工具,自动将手绘草图转换成清晰的线条画
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
20977 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
6650 16
|
人工智能 并行计算 PyTorch
ViewExtrapolator:南洋理工联合UCAS团队推出的新型视图合成方法
南洋理工大学与UCAS团队联合推出了一种新型视图合成方法——ViewExtrapolator。该方法基于稳定视频扩散(SVD)技术,能够在不进行微调的情况下,高效生成超出训练视图范围的新视角图像,显著减少伪影,提升视觉质量。ViewExtrapolator具有广泛的应用前景,尤其在虚拟现实、3D内容创建、电影制作等领域。
183 1
ViewExtrapolator:南洋理工联合UCAS团队推出的新型视图合成方法
|
人工智能 JavaScript 数据可视化
深入探索 Flux Tools 在 AI 图像创作中的强大功能
Flux Tools 是由 Black Forest Labs 开发的一套先进 AI 图像编辑工具,集成了修补、扩展、深度映射和边缘检测等功能,为用户提供高精度的图像控制能力,广泛应用于照片编辑、数字艺术创作和设计工作等领域,极大提升了创作效率与自由度。
|
人工智能 自然语言处理 并行计算
EchoMimicV2:阿里推出的开源数字人项目,能生成完整数字人半身动画
EchoMimicV2是阿里蚂蚁集团推出的开源数字人项目,能够生成完整的数字人半身动画。该项目基于参考图片、音频剪辑和手部姿势序列,通过音频-姿势动态协调策略生成高质量动画视频,确保音频内容与半身动作的一致性。EchoMimicV2不仅支持中文和英文驱动,还简化了动画生成过程中的复杂条件,适用于虚拟主播、在线教育、娱乐和游戏等多个应用场景。
3608 5
EchoMimicV2:阿里推出的开源数字人项目,能生成完整数字人半身动画
|
物联网 Swift Python
基于qwen模型实现大模型应用探索-党务知识小助手
本项目基于qwen2-7b-instruct模型,采用LoRA技术,在党务知识数据集与通用数据集上进行微调,专为党务领域问答设计,涵盖党员教育等场景。通过数据准备、模型微调、推理测试及部署应用。
630 0

热门文章

最新文章