MySQL下载安装全攻略!小白也能轻松上手,从此数据库不再难搞!
这是一份详细的MySQL安装与配置教程,适合初学者快速上手。内容涵盖从下载到安装的每一步操作,包括选择版本、设置路径、配置端口及密码等。同时提供基础操作指南,如数据库管理、数据表增删改查、用户权限设置等。还介绍了备份恢复、图形化工具使用和性能优化技巧,帮助用户全面掌握MySQL的使用方法。附带常见问题解决方法,保姆级教学让你无忧入门!
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
Headless Chrome 优化:减少内存占用与提速技巧
在数据驱动的时代,爬虫技术至关重要。本文聚焦 Headless Chrome 优化方案,解决传统爬虫内存占用高、效率低等问题。通过无界面模式、代理 IP等配置,显著降低资源消耗并提升速度。实际案例中,该方案用于采集汽车点评数据,性能提升明显:内存占用降低 30%-50%,页面加载提速 40%-60%。结合技术架构图与演化树,全面解析爬虫技术演进,助力高效数据采集。
重磅!2025年中科院预警期刊名单正式发布!
中国科学院文献情报中心发布的《国际期刊预警名单》旨在防范学术不端与不当出版行为,保护科研生态良性发展。2025年版本聚焦两大问题:学术不端(如引用操纵、论文工厂)和不利于中国学术成果国际化传播的行为(如中国作者占比过高或APC费用不合理)。预警名单动态调整,发布时点从年底改为年初,便于科研人员及时调整投稿策略。被列入预警名单的期刊可能影响职称评审及科研经费认可,建议优先选择中科院分区表推荐期刊,警惕“快速代发”陷阱,并关注期刊官网声明。未来科研生态将更注重规范化与原创性,推动高质量学术发表。维护健康的学术环境对提升中国科研全球影响力至关重要。
seatunnel配置mysql2hive
本文介绍了SeaTunnel的安装与使用教程,涵盖从安装、配置到数据同步的全过程。主要内容包括: 1. **SeaTunnel安装**:详细描述了下载、解压及配置连接器等步骤。 2. **模拟数据到Hive (fake2hive)**:通过编辑测试脚本,将模拟数据写入Hive表。 3. **MySQL到控制台 (mysql2console)**:创建配置文件并执行命令,将MySQL数据输出到控制台。 4. **MySQL到Hive (mysql2hive)**:创建Hive表,配置并启动同步任务,支持单表和多表同步。
HTTP代理配置中的常见错误及其解决方案
随着互联网发展,使用HTTP动态代理IP的需求日益增加。配置HTTP代理时常见问题及解决方法包括:1) 代理服务器无法连接:检查网络、防火墙和代理服务状态;2) 认证失败:确认凭据和配置;3) 请求超时:增加超时时间、检查后端服务和网络延迟;4) 缓存问题:清理缓存、设置缓存控制或禁用缓存;5) SSL/TLS问题:正确配置证书并确保客户端信任;6) 访问控制问题:检查ACL和日志;7) 性能问题:监控资源、负载均衡和优化配置;8) 日志记录与分析问题:启用详细日志、设置轮换策略和使用分析工具。通过解决这些问题,可以更有效地管理HTTP代理。
通过pin_memory 优化 PyTorch 数据加载和传输:工作原理、使用场景与性能分析
在 PyTorch 中,`pin_memory` 是一个重要的设置,可以显著提高 CPU 与 GPU 之间的数据传输速度。当 `pin_memory=True` 时,数据会被固定在 CPU 的 RAM 中,从而加快传输到 GPU 的速度。这对于处理大规模数据集、实时推理和多 GPU 训练等任务尤为重要。本文详细探讨了 `pin_memory` 的作用、工作原理及最佳实践,帮助你优化数据加载和传输,提升模型性能。
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
NLP中TF-IDF算法
TF-IDF(词频-逆文档频率)是一种用于信息检索与数据挖掘的加权技术,通过评估词语在文档中的重要性来过滤常见词语,保留关键信息。本文介绍了TF-IDF的基本概念、公式及其在Python、NLTK、Sklearn和jieba中的实现方法,并讨论了其优缺点。TF-IWF是TF-IDF的优化版本,通过改进权重计算提高精度。
【10月更文挑战第10天】「Mac上学Python 19」小学奥数篇5 - 圆和矩形的面积计算
本篇将通过 Python 和 Cangjie 双语解决简单的几何问题:计算圆的面积和矩形的面积。通过这道题,学生将掌握如何使用公式解决几何问题,并学会用编程实现数学公式。
Text-to-SQL技术演进 - 阿里云OpenSearch-SQL在BIRD榜单夺冠方法剖析
本文介绍了Text-to-SQL的技术演进,并对OpenSearch-SQL方法进行剖析。
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
边缘计算与AI结合的场景案例研究
【8月更文第17天】随着物联网(IoT)设备数量的爆炸性增长,对实时数据处理的需求也随之增加。传统的云计算模型在处理这些数据时可能会遇到延迟问题,尤其是在需要即时响应的应用中。边缘计算作为一种新兴的技术趋势,旨在通过将计算资源更靠近数据源来解决这个问题。本文将探讨如何将人工智能(AI)技术与边缘计算结合,以实现高效的实时数据分析和决策制定。
官宣|Apache Flink 1.20 发布公告
Apache Flink 1.20.0 已发布,这是迈向 Flink 2.0 的最后一个小版本,后者预计年底发布。此版本包含多项改进和新功能,涉及 13 个 FLIPs 和 300 多个问题解决。亮点包括引入物化表简化 ETL 管道开发,统一检查点文件合并机制减轻文件系统压力,以及 SQL 语法增强如支持 `DISTRIBUTED BY` 语句。此外,还进行了大量的配置项清理工作,为 Flink 2.0 铺平道路。这一版本得益于 142 位贡献者的共同努力,其中包括来自中国多家知名企业的开发者。
MaxCompute操作报错合集之遇到报错:ODPS-0110061: Failed to run ddltask - Modify DDL meta encounter exception该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
探索文本向量化的新高峰:合合信息acge_text_embedding 模型原创
文本向量化方法包括词袋模型、TF-IDF、词嵌入和预训练模型(如BERT、GPT)。词嵌入如Word2Vec、GloVe和FastText捕捉单词语义,预训练模型则保留上下文信息。C-MTEB是中文文本嵌入评估平台,测试模型在检索、相似性、分类等任务的性能。合合信息的acge_text_embedding模型在C-MTEB中表现优秀,适用于情感分析、文本生成等任务,具有高分类聚类准确性、资源效率和场景适应性。技术突破涉及数据集优化、模型训练策略和持续学习,提供Demo展示如何使用acge模型计算句子相似度。acge_text_embedding是提升文本处理效率和智能化的有力工具。
Debian安装与基本使用:详细指南及常见问题解析
【4月更文挑战第13天】本文档介绍了Debian的安装步骤、基本使用、问题解析及进阶技巧。首先,安装Debian涉及下载ISO镜像,制作启动介质,设置BIOS,然后进行安装过程,包括选择语言、分区、网络配置、软件包选择和用户账户设置。安装完成后,学会基本操作,如命令行使用、软件管理(apt)、系统更新和维护。遇到问题时,解决无线网络、分辨率、输入法和依赖问题。进阶技巧包括自定义Shell环境、使用虚拟化技术(Docker、LXC/LXD)、系统监控与性能调优,以及Git和自动化脚本的高级应用。通过学习这些技巧,可提升在Debian系统上的工作效率。
Flink SQL 问题之用代码执行报错如何解决
Flink SQL报错通常指在使用Apache Flink的SQL接口执行数据处理任务时遇到的问题;本合集将收集常见的Flink SQL报错情况及其解决方法,帮助用户迅速恢复数据处理流程。
Mamba详细介绍和RNN、Transformer的架构可视化对比
Transformer体系结构已经成为大型语言模型(llm)成功的主要组成部分。为了进一步改进llm,人们正在研发可能优于Transformer体系结构的新体系结构。其中一种方法是Mamba(一种状态空间模型)。
《揭秘,阿里开源自研搜索引擎Havenask的在线检索服务》
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内几乎整个阿里的搜索业务。本文针对性介绍了Havenask的在线检索服务,它具备高可用、高时效、低成本的优势,帮助企业和开发者量身定做适合业务发展的智能搜索服务。
阿里云PAI-灵骏大模型训练工具Pai-Megatron-Patch正式开源!
随着深度学习大语言模型的不断发展,其模型结构和量级在快速演化,依托大模型技术的应用更是层出不穷。对于广大开发者来说不仅要考虑如何在复杂多变的场景下有效的将大模型消耗的算力发挥出来,还要应对大模型的持续迭代。开发简单易用的大模型训练工具就成了应对以上问题广受关注的技术方向,让开发者专注于大模型解决方案的开发,降低大模型训练加速性能优化和训练/推理全流程搭建的人力开发成本。阿里云机器学习平台PAI开源了业内较早投入业务应用的大模型训练工具Pai-Megatron-Patch,本文将详解Pai-Megatron-Patch的设计原理和应用。
阿里云 EMR 基于 Apache DolphinScheduler 产品技术实践和社区贡献
本文整理自阿里云 EMR 数据开发团队负责人孙一凡(Evans 忆梵),在 Apache Spark & DS Meetup 的分享
阿里云大数据助力知衣科技打造AI服装行业核心竞争力
杭州知衣科技有限公司是一家以人工智能技术为驱动的国家高新技术企业,致力于将数据化趋势发现、爆款挖掘和供应链组织能力标准化输出,打造智能化服装设计的供应链平台。
阿里云云原生一体化数仓 — 离线实时一体化新能力解读
介绍MaxCompute+Hologres离线和实时数仓一体化优于之前有离线、有在线、有很多不同的引擎的实现方案,通过用实时的引擎做预处理,实现离线实时数据入仓后做更加实时的服务化BI分析实践。
使用实践|Hologres性能调优全方位解读
本文是Hologres阿里妈妈用户根据实际业务总结的经验贴,希望通过本文内容,能帮助大家更好的理解在Hologres中如何做性能调优,从而帮助业务实现更优的性能。
Flink RocksDB 状态后端参数调优实践
RocksDB 的配置也是极为复杂的,可调整的参数多达百个,没有放之四海而皆准的优化方案。如果仅考虑 Flink 状态存储这一方面,我们仍然可以总结出一些相对普适的优化思路。本文先介绍一些基础知识,再列举方法。
【最佳实践】Elasticsearch Java Rest Client快速上手(附完整示例代码包)
本文介绍Elasticsearch的Java Client的原理、版本兼容性以及使用示例,帮助您快速使用Java客户端与Elasticsearch集群进行交互,完成检索、分析等相关业务。
80后阿里P10,“关老板”如何带着MaxCompute一路升级?
我是个幸运的人。虽然幸运不能被复制,但是眼光和努力可以。 “我是一个兴趣驱动型的人,职业生涯总的来说,还算挺幸运的,做自己感兴趣的事情,走上IT这一行……” 特别久以前,大概初中的时候有了自己的第一台电脑,大名鼎鼎的486,带一个数学协处理器,主频266MHz,内存有4MB。”
QuickSSO 与 ECreator 实操应用案例手册
本手册以企业 CRM 搭建与统一身份认证接入为场景,先说明环境要求与模块确认,再讲 ECreator 建 CRM 的应用、数据模型、页面及流程设计,后述 QuickSSO 认证中心配置、权限分配与测试,还提及效果验证与常见问题排查,助用户掌握二者协同应用。
向量存储vs知识图谱:LLM记忆系统技术选型
本文探讨LLM长期记忆系统的构建难点与解决方案,对比向量检索与知识图谱架构优劣,分析Zep、Mem0、Letta等开源框架,并提供成本优化策略,助力开发者实现高效、可扩展的AI记忆系统。
用Playwright打造可靠的企业级采集方案--从单机验证到集群化落地
本项目将单机Playwright爬虫逐步演进为分布式集群,解决脚本不稳定、限速、维护难等问题。以招聘数据采集为例,实现从页面解析、代理IP轮换、Redis任务队列到多机并发的完整链路,结合MongoDB/Elasticsearch落库与可视化,形成可复用的生产级爬虫架构,适用于数据分析、岗位监控等场景。
数据开发再提速!DataWorks正式接入Qwen3-Coder
阿里云DataWorks平台正式接入Qwen3-Coder模型,用户通过Copilot智能助手可实现自然语言交互生成代码,提升数据开发效率。支持SQL/Python代码生成、优化及Notebook文件创建,适用于数据分析与算法构建,助力企业高效开发。
实时数仓Hologres V3.1版本发布,Serverless型实例从零开始构建OLAP系统
Hologres推出Serverless型实例,支持按需计费、无需独享资源,适合新业务探索分析。高性能查询内表及MaxCompute/OSS外表,弹性扩展至512CU,性能媲美主流开源产品。新增Dynamic Table升级、直读架构优化及ChatBI解决方案,助力高效数据分析。
JAVA 八股文全网最详尽整理包含各类核心考点助你高效学习 jAVA 八股文赶紧收藏
本文整理了Java核心技术内容,涵盖Java基础、多线程、JVM、集合框架等八股文知识点,包含面向对象特性、线程创建与通信、运行时数据区、垃圾回收算法及常用集合类对比,附有代码示例与学习资料下载链接,适合Java开发者系统学习与面试准备。
AI重构数据价值链,解码「智能问数」如何赋能医药制造
随着中国医药制造业的蓬勃发展,中国已跃居全球第二大医药市场。随着监管政策的深入实施,市场对医药企业在生产、运营、管理等方面提出了更为严苛的要求。2025年政府工作报告明确提出,持续推进“人工智能+”行动,将数字技术与制造优势、市场优势更好结合起来,支持大模型广泛应用。
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。