CamVid数据集(智能驾驶场景的语义分割)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: CamVid 数据集是由剑桥大学公开发布的城市道路场景的数据集。CamVid全称:The Cambridge-driving Labeled Video Database,它是第一个具有目标类别语义标签的视频集合。数据集包 括 700 多张精准标注的图片用于强监督学习,可分为训练集、验证集、测试集。同时, 在 CamVid 数据集中通常使用 11 种常用的类别来进行分割精度的评估,分别为:道路 (Road)、交通标志(Symbol)、汽车(Car)、天空(Sky)、行人道(Sidewalk)、电线杆 (Pole)、围墙(Fence)、行人(Pedestrian)、建筑物(Building)

前言

CamVid 数据集是由剑桥大学公开发布的城市道路场景的数据集。CamVid全称:The Cambridge-driving Labeled Video Database,它是第一个具有目标类别语义标签的视频集合。

数据集包 括 700 多张精准标注的图片用于强监督学习,可分为训练集、验证集、测试集。同时, 在 CamVid 数据集中通常使用 11 种常用的类别来进行分割精度的评估,分别为:道路 (Road)、交通标志(Symbol)、汽车(Car)、天空(Sky)、行人道(Sidewalk)、电线杆 (Pole)、围墙(Fence)、行人(Pedestrian)、建筑物(Building)、自行车(Bicyclist)、 树木(Tree)。


 一、简介

CamVid数据集提供32个ground truth语义标签,将每个像素与语义类别之一相关联。该数据集解决了对实验数据的需求,以定量评估新兴算法。数据是从驾驶汽车的角度拍摄的,驾驶场景增加了观察目标的数量和异质性。

官网http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/

image.gif


二、精准标注示例

示例1:

image.gif


示例2:

image.gif


示例3:

image.gif


三、类别定义

类别标签链接:http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/#ClassLabels

image.gif


下面是几个大类别,进行细分的各个小类别:

image.gif




四、下载数据集

官网下载地址:Object Recognition in Video Dataset

image.gif


我上传到了网盘,或者大家到这里下载:

链接:https://pan.baidu.com/s/1E50QplXMcZISlFV5RN4CLg 

提取码:1024

 

本文直供大家参考和学习,谢谢。

相关文章
医学影像分割领域常用数据集
医学影像分割领域常用数据集
443 0
|
20天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的地面垃圾识别分类技术
AI垃圾分类系统结合深度学习和计算机视觉技术,实现高效、精准的垃圾识别与自动分类。系统集成高精度图像识别、多模态数据分析和实时处理技术,适用于市政环卫、垃圾处理厂和智能回收设备,显著提升管理效率,降低人工成本。
基于深度学习的地面垃圾识别分类技术
|
1月前
|
数据采集
遥感语义分割数据集中的切图策略
该脚本用于遥感图像的切图处理,支持大尺寸图像按指定大小和步长切割为多个小图,适用于语义分割任务的数据预处理。通过设置剪裁尺寸(cs)和步长(ss),可灵活调整输出图像的数量和大小。此外,脚本还支持标签图像的转换,便于后续模型训练使用。
19 0
|
2月前
|
自然语言处理 数据处理
情感分析的终极形态:全景式细粒度多模态对话情感分析基准PanoSent
【9月更文挑战第24天】PanoSent是一种全新的多模态对话情感分析框架,旨在全景式地提取和分析情感元素,包括情感六元组提取与情感翻转分析两大任务。此框架依托大规模、高质量的多模态数据集PanoSent,涵盖文本、图像、音频等多种模态及多种语言,适应不同应用场景。为解决这些任务,研究人员提出了Chain-of-Sentiment推理框架,结合多模态大语言模型Sentica,实现细粒度的情感分析。尽管PanoSent在情感分析任务上表现优异,但仍面临多模态数据处理和跨领域适用性的挑战。
54 2
|
传感器 机器学习/深度学习 编解码
智能驾驶--语义分割 公开数据集 汇总
本文整理了10个质量较好,数据集较大,比较新的,图像语义分割的公开数据集;主要服务于智能驾驶方向(辅助驾驶、自动驾驶等)。
603 0
|
6月前
|
机器学习/深度学习 编解码 运维
深度学习数据集合(交通标志/火焰/手写字符/道路裂缝数据集)
深度学习数据集合(交通标志/火焰/手写字符/道路裂缝数据集)
|
6月前
|
机器学习/深度学习 算法 API
视觉智能平台如何识别图像的某个特征?
视觉智能平台如何识别图像的某个特征?
65 0
|
算法 自动驾驶 开发者
Cityscapes数据集(智能驾驶场景的语义分割)
面向智能驾驶(辅助驾驶、自动驾驶)场景下的语义分割任务,由于非结构化场景的复杂性,是一个非常具有挑战性的任务,所以有许多研究者和研究机构公开了很多相关的数据集推动语义分割领域的发展。本文主要介绍Cityscapes数据集。
556 0
|
机器学习/深度学习 编解码 人工智能
【计算机视觉】MaskFormer:将语义分割和实例分割作为同一任务进行训练
目标检测和实例分割是计算机视觉的基本任务,在从自动驾驶到医学成像的无数应用中发挥着关键作用。目标检测的传统方法中通常利用边界框技术进行对象定位,然后利用逐像素分类为这些本地化实例分配类。但是当处理同一类的重叠对象时,或者在每个图像的对象数量不同的情况下,这些方法通常会出现问题。
【计算机视觉】MaskFormer:将语义分割和实例分割作为同一任务进行训练
|
机器学习/深度学习 人工智能 自然语言处理
深度学习应用篇-自然语言处理[10]:N-Gram、SimCSE介绍,更多技术:数据增强、智能标注、多分类算法、文本信息抽取、多模态信息抽取、模型压缩算法等
深度学习应用篇-自然语言处理[10]:N-Gram、SimCSE介绍,更多技术:数据增强、智能标注、多分类算法、文本信息抽取、多模态信息抽取、模型压缩算法等
下一篇
无影云桌面