Forrester发布流式数据平台报告:Flink 创始团队跻身领导者行列,实时AI能力获权威认可
Ververica,由Apache Flink创始团队创立、阿里云旗下企业,首次入选Forrester 2025流式数据平台领导者象限,凭借在实时AI与流处理领域的技术创新及全场景部署能力获高度认可,成为全球企业构建实时数据基础设施的核心选择。
Python | 网格搜索参数优化的XGBoost+SHAP可解释性分析回归预测及可视化算法
本教程将推出Python实现的XGBoost回归预测,结合网格搜索调参与SHAP可解释性分析,涵盖数据处理、模型训练、可视化及结果保存,助力科研论文提升模型可解释性,附完整代码与保姆级环境配置指南。
打造可编程可集成的实时计算平台:阿里云实时计算 Flink被集成能力深度解析
本文由阿里云Flink团队李昊哲主讲,系统介绍Flink四层开放架构:通过OpenAPI、Git集成、多语言SDK等能力,实现控制面、数据面、开发面与运维面的全面开放。助力企业构建可编程、可嵌入、可治理的实时计算平台,推动数据开发工程化升级。
阿里云 Elasticsearch 的 AI 革新:高性能、低成本、智能化的搜索新纪元
本文介绍了数智化浪潮下, 阿里云 Elasticsearch 打通了 云原生内核优化、RAG 闭环方案、云原生推理平台 三大能力模块,实现了从底层到应用的全链路升级,助力企业构建面向未来的智能搜索中枢。
构建AI智能体:十二、给词语绘制地图:Embedding如何构建机器的认知空间
Embedding是一种将词语、图像等信息转化为低维稠密向量的技术,使计算机能捕捉语义关系。不同于传统One-Hot编码,Embedding通过空间距离表达语义相似性,如“国王-男人+女人≈王后”,广泛应用于NLP、推荐系统与大模型中,是AI理解世界的基石。
云栖实录|驰骋在数据洪流上:Flink+Hologres驱动零跑科技实时计算的应用与实践
零跑科技基于Flink构建一体化实时计算平台,应对智能网联汽车海量数据挑战。从车机信号实时分析到故障诊断,实现分钟级向秒级跃迁,提升性能3-5倍,降低存储成本。通过Flink+Hologres+MaxCompute技术栈,打造高效、稳定、可扩展的实时数仓,支撑100万台量产车背后的数据驱动决策,并迈向流批一体与AI融合的未来架构。
氛围编程陷阱:为什么AI生成代码正在制造大量"伪开发者"
AI兴起催生“氛围编程”——用自然语言生成代码,看似高效实则陷阱。它让人跳过编程基本功,沦为只会提示、不懂原理的“中间商”。真实案例显示,此类项目易崩溃、难维护,安全漏洞频出。AI是技能倍增器,非替代品;真正强大的开发者,永远是那些基础扎实、能独立解决问题的人。
企业级 AI 模型无代码落地指南:基于阿里云工具链,从 0 到 1 实现业务价值
某汽车零部件厂商通过阿里云PAI、OSS等工具,实现无代码AI质检落地:仅用控制台操作完成数据治理到部署,质检效率提升3倍,模型周期从2月缩至2周。本文详解全栈可视化方案,助力企业零代码落地AI。
19c多租户架构下的UNDO管理- Local Undo
Oracle 12c引入多租户架构,PDB共享CDB的UNDO表空间。19c新增Local Undo特性,支持各PDB独立管理UNDO,提升性能、隔离性与可管理性,且为热克隆、PDB迁移等高级功能的前提。建议19c环境启用Local Undo。
淘宝闪购基于Flink&Paimon的Lakehouse生产实践:从实时数仓到湖仓一体化的演进之路
本文整理自淘宝闪购(饿了么)大数据架构师王沛斌在 Flink Forward Asia 2025 上海站的分享,深度解析其基于 Apache Flink 与 Paimon 的 Lakehouse 架构演进与落地实践,涵盖实时数仓发展、技术选型、平台建设及未来展望。
AI推理方法演进:Chain-of-Thought、Tree-of-Thought与Graph-of-Thought技术对比分析
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
前端实现多方言实时转写:VAD端点检测+流式ASR接入,识别准确率提升300%
本文面向前端工程师,详解多方言中文自动语音识别(ASR)的完整落地接入方案,涵盖录音采集、音质增强、编码传输、流式识别、结果合并等关键技术环节,助力实现“即录即识、边说边出字”的实时交互体验。
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
在AI代理系统开发中,上下文工程成为提升系统性能的关键技术。本文探讨了从提示工程到上下文工程的转变,强调其通过为AI系统提供背景信息和工具支持,显著提升智能化程度和实用价值。文章系统分析了上下文工程的理论基础、核心策略(如写入、选择、压缩和隔离),并结合LangChain和LangGraph工具,展示了如何实现上下文工程技术以优化AI代理性能。通过Scratchpad机制、内存管理、RAG系统集成、多代理架构及沙盒环境等技术手段,开发者可以更高效地构建高性能、可扩展的AI系统。
阿里云PAI AutoML实战:20分钟构建高精度电商销量预测模型
本文介绍了如何利用阿里云 PAI AutoML 平台,在20分钟内构建高精度的电商销量预测模型。内容涵盖项目背景、数据准备与预处理、模型训练与优化、部署应用及常见问题解决方案,助力企业实现数据驱动的精细化运营,提升市场竞争力。
quickbi使用总结以及问题反馈
本文总结了使用QuickBI高级版及电子表格的功能体验与改进建议。内容涵盖具体报表使用(如趋势分析表、多维趋势表)、函数及其他模块(如LOD函数、自助取数)、AI智能问数模块以及数据集使用的优缺点。指出趋势分析表在复合指标处理上的不足,多维趋势表对比周期限制,以及1万条明细数据限制对年同比的影响等问题。同时提出未来期望,希望建立结合企业知识库的大模型,优化数据分析与建议能力。
网站价格监控:动态价格数据的实时抓取案例
本案例展示了如何利用爬虫技术实时抓取京东等电商平台的商品信息、价格及用户评价,通过代理IP、Cookie和User-Agent确保数据稳定采集。关键数据分析包括价格动态监控、评价趋势分析和竞争情报获取,助力商家制定策略。代码从简单请求逐步演进为具备异常处理、数据解析等功能的完整体系,并设计了「技术关系图谱」,直观展示系统模块间的关系,为开发者提供全局视角和技术路径参考。
【独家揭秘2025】VMware Workstation Pro虚拟机:免费安装教程大放送,一键解锁操作系统模拟神器!
VMware Workstation Pro 是由威睿(VMware)公司开发的一款功能强大的桌面虚拟化软件,允许用户在同一台物理计算机上同时运行多个操作系统,如Windows、..
微信公众号接口:解锁公众号开发的无限可能
微信公众号接口是微信官方提供的API,支持开发者通过编程与公众号交互,实现自动回复、消息管理、用户管理和数据分析等功能。本文深入探讨接口的定义、类型、优势及应用场景,如智能客服、内容分发、电商闭环等,并介绍开发流程和工具,帮助运营者提升用户体验和效率。未来,随着微信生态的发展,公众号接口将带来更多机遇,如小程序融合、AI应用等。
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
Flink 四大基石之 Checkpoint 使用详解
Flink 的 Checkpoint 机制通过定期插入 Barrier 将数据流切分并进行快照,确保故障时能从最近的 Checkpoint 恢复,保障数据一致性。Checkpoint 分为精确一次和至少一次两种语义,前者确保每个数据仅处理一次,后者允许重复处理但不会丢失数据。此外,Flink 提供多种重启策略,如固定延迟、失败率和无重启策略,以应对不同场景。SavePoint 是手动触发的 Checkpoint,用于作业升级和迁移。Checkpoint 执行流程包括 Barrier 注入、算子状态快照、Barrier 对齐和完成 Checkpoint。
HTTP代理配置中的常见错误及其解决方案
随着互联网发展,使用HTTP动态代理IP的需求日益增加。配置HTTP代理时常见问题及解决方法包括:1) 代理服务器无法连接:检查网络、防火墙和代理服务状态;2) 认证失败:确认凭据和配置;3) 请求超时:增加超时时间、检查后端服务和网络延迟;4) 缓存问题:清理缓存、设置缓存控制或禁用缓存;5) SSL/TLS问题:正确配置证书并确保客户端信任;6) 访问控制问题:检查ACL和日志;7) 性能问题:监控资源、负载均衡和优化配置;8) 日志记录与分析问题:启用详细日志、设置轮换策略和使用分析工具。通过解决这些问题,可以更有效地管理HTTP代理。
从方向导数到梯度:深度学习中的关键数学概念详解
方向导数衡量函数在特定方向上的变化率,其值可通过梯度与方向向量的点积或构造辅助函数求得。梯度则是由偏导数组成的向量,指向函数值增长最快的方向,其模长等于最速上升方向上的方向导数。这两者的关系在多维函数分析中至关重要,广泛应用于优化算法等领域。
如果API调用失败,我应该如何排查问题?
当小红书API调用失败时,可按以下步骤排查:1. 检查请求参数;2. 确认身份验证凭据;3. 控制调用频率;4. 检查网络连接;5. 查看错误码和日志;6. 核实授权范围;7. 联系技术支持;8. 定期更新与测试。这些方法有助于系统地解决问题,确保API调用稳定。
什么是公网IP和内网IP
【10月更文挑战第27天】公网IP与内网IP是网络通信中的两个重要概念。公网IP是互联网上的唯一标识,而内网IP仅在局域网内部有效,用于局域网内的设备通信。由于IPv4地址资源有限,通常一个公司或家庭只有一个公网IP,内部设备通过NAT(网络地址转换)技术共享该公网IP访问互联网。这样不仅节省了IP资源,还提高了网络安全性和稳定性。
如果您干不动跨境外贸独立站,可以来看看反向海淘代购模式
反向海淘代购模式是指海外消费者通过国内电商平台购买中国商品,再由代购方负责采购、质检、包装和国际运输。该模式商品丰富、价格竞争力强,能满足个性化需求,但也面临物流成本高、海关政策复杂等挑战。
Java“ArrayIndexOutOfBoundsException”解决
Java中的“ArrayIndexOutOfBoundsException”异常通常发生在尝试访问数组的无效索引时。解决方法包括:检查数组边界,确保索引值在有效范围内;使用循环时注意终止条件;对用户输入进行验证。通过这些措施可以有效避免该异常。
ubuntu build install python3.12 and config pip
该脚本用于在 Ubuntu 上编译安装 Python 3.12,并配置 pip 使用国内镜像源。主要步骤包括安装依赖、下载并解压 Python 源码、编译安装、创建符号链接、配置 pip 源,以及验证安装和更新 pip。通过运行此脚本,可以快速完成 Python 3.12 的安装和配置。
数据包络分析(Data Envelopment Analysis, DEA)详解与Python代码示例
数据包络分析(Data Envelopment Analysis, DEA)详解与Python代码示例
免费泛域名申请以及无限续期
在Ubuntu 20.04上,使用certbot和snapd安装Let's Encrypt证书以实现免费泛域名(如`*.example.com`)的无限续期。首先安装snapd,然后卸载并安装certbot,创建certbot软连接。设置trust-plugin-with-root,安装certbot-dns-cloudflare插件,配置Cloudflare API token。通过certbot certonly命令获取证书,包括子域名,并设置自动续期。将证书导入nginx并验证。最后,创建post-renewal hook以在续期后自动重启nginx。
新手向 Python:VsCode环境下Manim配置
该文介绍了如何准备和配置开发环境以使用Manim,主要包括两个步骤:一是准备工作,需要下载并安装VsCode和Anaconda,其中Anaconda需添加到系统PATH环境变量,并通过清华镜像源配置;二是配置环境,VsCode中安装中文插件和Python扩展,激活并配置虚拟环境。最后,安装ffmpeg和manim,通过VsCode运行测试代码验证配置成功。
实时计算 Flink版操作报错合集之运行个几个小时就开始报错,是什么原因导致的
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
LSTM时间序列预测中的一个常见错误以及如何修正
在使用LSTM进行时间序列预测时,常见错误是混淆回归和预测问题。LSTM需将时间序列转化为回归问题,通常使用窗口或多步方法。然而,窗口方法中,模型在预测未来值时依赖已知的未来值,导致误差累积。为解决此问题,应采用迭代预测和替换输入值的方法,或者在多步骤方法中选择合适的样本数量和训练大小以保持时间结构。编码器/解码器模型能更好地处理时间数据。
Flink CDC 3.0 正式发布,详细解读新一代实时数据集成框架
Flink CDC 于 2023 年 12 月 7 日重磅推出了其全新的 3.0 版本 ~
推荐场景GPU优化的探索与实践:CUDA Graph与多流并行的比较与分析
RTP 系统(即 Rank Service),是一个面向搜索和推荐的 ranking 需求,支持多种模型的在线 inference 服务,是阿里智能引擎团队沉淀多年的技术产品。今年,团队在推荐场景的GPU性能优化上又做了新尝试——在RTP上集成了Multi Stream,改变了TensorFlow的单流机制,让多流的执行并行,作为增加GPU并行度的另一种选择。本文详细介绍与比较了CUDA Graph与多流并行这两个方案,以及团队的实践成果与心得。
BEVFormer-accelerate:基于EasyCV加速BEVFormer
BEVFormer是一种纯视觉的自动驾驶感知算法,通过融合环视相机图像的空间和时序特征显式的生成具有强表征能力的BEV特征,并应用于下游3D检测、分割等任务,取得了SOTA的结果。
MaxCompute湖仓一体介绍
本篇内容分享了MaxCompute湖仓一体介绍。 分享人:孟硕 阿里云 MaxCompute产品专家
Kibana 的 Alert—Elastic Stack 实战手册
Kibana 的 Alert 模块主要用于 Elastic Stack 的监控告警。以一种相对较低的使用成本,将复杂的查询条件,编辑完成后监控不同的 Elastic Stack 的技术产品中产生的数据,最终把符合条件的告警信息以需要的方式反馈给用户。
【最佳实践】实时计算 Flink 版在金融行业的实时数仓建设实践
金融是现代经济的核心。我国金融业在市场化改革和对外开放中不断发展,金融总量大幅增长。金融稳定直接关系到国家经济发展的前途和命运,金融业是国民经济发展的晴雨表。对我国金融业发展现状进行客观分析,对金融业发展趋势进行探索,有助于消除金融隐患,使金融业朝着健康、有序方向发展。
【Elasticsearch 入门公开课】在Docker环境中,实操详解 ELK 基本概念-回顾篇(2)
『Elasticsearch 入门课程23讲』目前已播出至第10讲,本周通过阮一鸣老师细致的讲解及实操,让大家了解如何通过 Docker 运行 Elasticsearch Kibana 、如何安装 Logstash 并导入数据 、对 Elasticsearch 关于索引、文档、REST API、节点、集群、分片及副本有了一个系统的了解。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。