【MATLAB】ICEEMDAN+FFT+HHT组合算法

简介: 【MATLAB】ICEEMDAN+FFT+HHT组合算法

【MATLAB】ICEEMDAN+FFT+HHT组合算法

微信公众号由于改变了推送规则,为了每次新的推送可以在第一时间出现在您的订阅列表中,记得将本公众号设为星标或置顶哦~

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

ICEEMDAN+FFT+HHT组合算法是一种基于集成经验模态分解(EEMD)、快速傅里叶变换(FFT)和希尔伯特-黄变换(HHT)的组合算法。

其中,EEMD是一种用于处理非线性和非平稳信号的适应性信号分解方法。它通过在信号中加入白噪声,并多次进行经验模态分解(EMD),从而获得原信号的多种本征模态函数(IMF)。这些IMF可以更好地捕捉到信号中的局部特征,特别是对于非线性、非平稳信号。

FFT是一种高效的计算离散傅里叶变换(DFT)和其逆变换的算法。它可以在短时间内计算出信号在频域上的表达,从而提供信号的频率特征。

HHT是一种用于分析非线性和非平稳信号的数学工具。它通过将信号分解成一系列固有模态函数(IMF),并计算每个IMF的瞬时频率,从而提供信号的时频特征。

将EEMD、FFT和HHT组合在一起,可以形成一种强大的分析方法。首先,使用EEMD将原始信号分解成多个IMF,然后对每个IMF进行FFT计算其频谱,最后使用HHT分析其时频特征。这种组合方法可以综合利用三种方法的优点,对于处理非线性和非平稳信号具有较高的准确性和鲁棒性。

总的来说,ICEEMDAN+FFT+HHT 组合算法是一种有效的信号处理方法,可以用于处理和分析非线性和非平稳信号。

以下是对ICEEMDAN+FFT+HHT组合算法的进一步介绍:

ICEEMDAN+FFT+HHT组合算法是一种将改进的集成经验模态分解(EEMD)与快速傅里叶变换(FFT)和希尔伯特-黄变换(HHT)相结合的信号处理方法。该方法在处理非线性、非平稳信号时具有较高的准确性和鲁棒性。

在ICEEMDAN算法中,通过引入自适应噪声和迭代次数优化,改进了EEMD算法的性能。自适应噪声能够增加信号分解的多样性和鲁棒性,而迭代次数的优化则能够减少分解所需的时间和计算量。

FFT是一种高效计算离散傅里叶变换(DFT)及其逆变换的算法,能够提供信号在频域上的表达。使用FFT可以快速获取信号的频率特征,对于分析非平稳信号非常有用。

HHT是一种基于希尔伯特谱的信号分析方法,能够提供信号的时频特征。它将信号分解成一系列固有模态函数(IMF),并计算每个IMF的瞬时频率,从而能够更好地捕捉信号中的局部特征和非线性行为。

将ICEEMDAN、FFT和HHT组合在一起,可以发挥它们的优点,实现对非线性和非平稳信号的准确处理和分析。首先,使用ICEEMDAN将原始信号分解成多个IMF;然后对每个IMF进行FFT计算其频谱;最后使用HHT分析其时频特征。这种组合方法能够综合利用三种方法的优点,提供更全面、更准确的信号特征信息。

需要注意的是,该组合算法也存在一些局限性和挑战。例如,EEMD算法的性能受限于噪声类型和迭代次数选择;FFT对于非平稳信号的处理效果可能不佳;HHT对于高频信号的分析可能会受到频率混叠的影响。因此,在实际应用中,需要根据具体问题和需求选择合适的算法和参数,并进行充分的验证和实验。

总的来说,ICEEMDAN+FFT+HHT组合算法是一种有效的信号处理方法,可以用于处理和分析非线性和非平稳信号。通过将改进的EEMD、FFT和HHT结合使用,该方法能够提供更准确、更全面的信号特征信息,为相关领域的研究和应用提供有力的支持。

除了以上提到的应用领域,ICEEMDAN+FFT+HHT组合算法还可以用于其他领域。例如,在图像处理中,可以使用EEMD将图像分解成多个区域,使用FFT计算每个区域的频谱,使用HHT分析每个区域的时频特征,从而更好地理解和分析图像的性质和行为。

此外,ICEEMDAN+FFT+HHT组合算法还可以与其他算法或技术结合使用,以进一步提高性能或扩展应用范围。例如,可以将EEMD与小波变换结合使用,以获得更好的信号分解效果;可以将FFT与短时傅里叶变换(STFT)结合使用,以获得更好的时频分析效果;可以将HHT与经验小波变换结合使用,以获得更好的时频分析和非线性分析效果。

同时,需要注意以下几点:

  1. 参数选择:对于任何算法,参数的选择都会影响其性能和结果。因此,在使用ICEEMDAN+FFT+HHT组合算法时,需要根据具体问题和数据选择合适的参数。
  2. 数据预处理:在应用组合算法之前,可能需要对数据进行预处理,例如去噪、平滑等。这有助于提高算法的性能和结果的准确性。
  3. 结果验证:对于任何算法,都需要进行结果验证以确保其正确性和有效性。可以使用已知数据进行验证,也可以使用实际数据进行验证。
  4. 算法优化:随着技术的发展和数据类型的增加,需要对算法进行不断优化和改进,以提高其性能和适用性。

总之,ICEEMDAN+FFT+HHT组合算法是一种非常强大的分析方法,具有广泛的应用前景和潜力。通过充分了解和掌握这些算法的原理和应用,可以更好地解决各种实际问题,推动相关领域的发展和进步。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】ICEEMDAN+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZeTlp5s

【MATLAB】CEEMDAN+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZacmZZp

【MATLAB】CEEMD+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZackp1r

【MATLAB】EEMD+FFT+HHT 组合算法

https://mbd.pub/o/bread/ZZablpxr

【MATLAB】EMD+FFT+HHT组合算法

https://mbd.pub/o/bread/ZZablJxs

MATLAB 开源算法及绘图代码合集汇总一览

https://www.aliyundrive.com/s/9GrH3tvMhKf

提取码: f0w7

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


1、感谢关注 Lwcah 的个人公众号,有关资源获取,请公众号后台发送推文末的关键词,自助获取。

2、若要添加个人微信号,请后台发送关键词:微信号。

3、若要进微信群:Lwcah 科研技巧群 3。请添加个人微信号后进群(大家沉浸式科研,广告勿扰),不定时更新科研技巧类推文。可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。


记得关注公众号,并设为星标哦~谢谢啦~


万请尊重原创成果!!!

声明:本公众号(Lwcah)的原创成果,在未经允许的情况下,请勿用于任何商业用途!

And,今后我会尽可能出一些更高质量的推文与大家共享,再一次感谢大家的关注与支持~也特别感谢大家对公众号的传播与分享,每天新增的关注都是我持续更新的动力!

您的每一次点赞,在看,关注和分享都是对我最大的鼓励~谢谢~


目录
相关文章
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
476 0
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
242 8
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
284 8
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
4月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
4月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
255 0
|
4月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
232 0
|
4月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
342 0
|
4月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
173 0
|
4月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
174 0