vLLM推理加速指南:7个技巧让QPS提升30-60%
GPU资源有限,提升推理效率需多管齐下。本文分享vLLM实战调优七招:请求塑形、KV缓存复用、推测解码、量化、并行策略、准入控制与预热监控。结合代码与数据,助你最大化吞吐、降低延迟,实现高QPS稳定服务。
Java 实现 SMTP 协议调用的详细示例及实战指南 SMTP Java 调用示例
本文介绍了如何使用Java调用SMTP协议发送邮件,涵盖SMTP基本概念、JavaMail API配置、代码实现及注意事项,适合Java开发者快速掌握邮件发送功能集成。
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
PAI训练服务:云上大模型训练新篇章
本文介绍了通用AI时代下的新训练方法及PAI平台的优化。随着大模型时代的到来,算力需求激增,硬件和网络通信成为瓶颈。PAI平台通过自动容错、3D健康检测等技术确保训练稳定性;通过资源配额、智能调度等提高性价比;并推出PAI-TorchAcc和PAI-ChatLearn两大引擎,分别实现高效训练加速和灵活的对齐训练,显著提升训练性能与效果。这些改进解决了大规模AI训练中的关键问题,提升了效率和稳定性。
大数据数仓建模基础理论【维度表、事实表、数仓分层及示例】
数据仓库建模是组织和设计数据以支持数据分析的过程,包括ER模型和维度建模。ER模型通过实体和关系描述数据结构,遵循三范式减少冗余。维度建模,特别是Kimball方法,用于数据仓库设计,便于分析和报告。事实表存储业务度量,如销售数据,分为累积、快照、事务和周期性快照类型。维度表提供描述性信息,如时间、产品、地点和客户详情。数仓通常分层为ODS(源数据)、DWD(明细数据)、DIM(公共维度)、DWS(数据汇总)和ADS(应用数据),以优化数据管理、质量、查询性能和适应性。
Trying to access array offset on value of type null
你就可以避免在null值上尝试访问数组偏移量的错误。 总的来说,当你遇到这个错误时,你应该回顾你的代码,确保在尝试访问数组偏移量之前,相关的变量已经被正确地初始化为一个数组,并且不是null。
ChatGPT Plus 首批70个插件最全解读
OpenAI放出大招,向所有ChatGPT Plus用户开放联网功能和众多插件,允许ChatGPT访问互联网并使用70个第三方插件。 本批第三方插件能够全方位覆盖衣食住行、社交、工作以及学习等日常所需,基本上能够扮演24小时私人助理的角色。
HTTPS证书是什么?
HTTPS证书准确来说是SSL证书(安全套接字层)或数字证书负责在您的网站和访问者浏览器之间创建安全连接。它确保网站和浏览器之间传递的所有数据保持私密和安全。当您使用SSL加密时,黑客将无法窃取您的私人信息,包括信用卡和借记卡号码、登录详细信息。
咨询还是平台?企业启动GEO的七步诊断与战略匹配框架
本文提供GEO(生成式引擎优化)服务模式选择的系统性决策框架,围绕专业能力、预算、目标周期、流程基础、需求性质、能力建设与时间资源七大维度,帮助企业精准匹配咨询或软件方案,避免投资错配,实现从启动校准到规模化落地的可持续竞争优势。
为什么传统数据库不够用,向量数据库如何补位?
本文通俗解析向量数据库:它让AI能按“语义相似性”而非关键词检索文本、图像等非结构化数据,是RAG技术的“记忆中枢”。详解嵌入原理、ANN索引(如HNSW)、实战搭建步骤及效果评估方法,强调其与传统数据库协同而非替代的关系。(239字)
AI Agent 职业路线全指南:从智能体普及浪潮到分层能力构建
2026年,“AI+”进入产业级落地期,智能体成为数字化转型核心基础设施。全球市场规模达2.3万亿,我国2027年普及率将超70%。人才缺口巨大,教育部已设“智能体技术应用”新专业。本文系统梳理四类职业路径(管理者、架构师、多智能体专家、垂直领域专家)及企业治理框架,助力职场人锚定定位、实战进阶。(239字)
文档切分实战:5种方法详解,打造高效RAG系统的第一步
本文深入解析RAG中至关重要的文档切分技术,系统介绍5种主流策略(句子、定长、重叠、递归、语义切分),结合代码示例与实战调优技巧,涵盖PDF/Markdown/代码等多格式处理,并提供质量评估与避坑指南,助你打造高精度、高效率的私有知识库。
若无 DNS 与代理 IP,我们的上网体验会崩塌吗?
DNS是互联网“快递员”,负责将域名精准解析为IP地址;代理IP则是“神秘信使”,隐匿真实身份、中转请求,保障隐私与访问自由。二者协同如接力赛:DNS先定位代理,代理再查目标IP,共同构建高效、安全、灵活的网络访问通路。
ADAMS 科研仿真,新版本来袭,附安装包
ADAMS是领先的多体动力学仿真软件,支持复杂机械系统建模与运动分析,集成有限元与控制软件,实现多物理场协同仿真,助力工程师优化设计、降低成本。
高效获取淘宝商品详情:API 开发实现链接解析的完整技术方案
2025反向海淘新机遇:依托代购系统,聚焦小众垂直品类,结合Pandabay数据选品,降本增效。系统实现智能翻译、支付风控、物流优化,助力中式养生茶等品类利润翻倍,新手也能快速入局全球市场。
Java 大视界 -- Java 大数据在智能家居能源消耗模式分析与节能策略制定中的应用(198)
简介:本文探讨Java大数据技术在智能家居能源消耗分析与节能策略中的应用。通过数据采集、存储与智能分析,构建能耗模型,挖掘用电模式,制定设备调度策略,实现节能目标。结合实际案例,展示Java大数据在智能家居节能中的关键作用。
Java Swing 开发的五星级酒店客房预订与管理系统源码
本文介绍了基于Java Swing的酒店管理系统开发方案。系统采用Java Swing构建GUI界面,结合MySQL数据库,实现预订管理、前台服务、客房管理、客户关系维护等功能模块。文章详细展示了登录界面、开房操作等核心功能的代码实现,包括数据验证和业务逻辑处理。该系统具有跨平台性,能有效提升酒店运营效率,为开发者提供GUI设计和数据库开发的实践案例。技术方案涵盖IntelliJ IDEA开发环境、Jform Designer插件辅助设计等工具链,适合中小型酒店管理需求。
AI 搜索开放平台重磅发布:Qwen3 模型上线啦
阿里云AI搜索开放平台重磅发布最新Qwen3模型,为企业和开发者提供全栈智能搜索解决方案。Qwen3作为最新一代大模型,在推理、多语言支持和Agent能力上表现卓越。用户可通过三步快速体验Qwen3服务,助力业务在AI时代抢占先机。
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
SigLIP 2:多语言语义理解、定位和密集特征的视觉语言编码器
SigLIP 2 是一种改进的多语言视觉-语言编码器系列,通过字幕预训练、自监督学习和在线数据管理优化性能。它在零样本分类、图像-文本检索及视觉表示提取中表现卓越,支持多分辨率处理并保持图像纵横比。模型提供 ViT-B 至 g 四种规格,采用 WebLI 数据集训练,结合 Sigmoid 损失与自蒸馏等技术提升效果。实验表明,SigLIP 2 在密集预测、定位任务及多模态应用中显著优于前代和其他基线模型。
DistilQwen2.5发布:通义千问蒸馏小模型再升级
为解决大语言模型在资源有限环境下的高计算成本和复杂性问题,阿里云推出了基于 Qwen2.5 的轻量化模型系列 DistilQwen2.5。该模型通过双层蒸馏框架、数据优化策略及参数融合技术,在保留性能的同时显著降低计算资源消耗。本文提供了详细的使用教程和代码示例,方便用户在 PAI 平台上调用。
Elasticsearch Serverless 高性价比智能日志分析关键技术解读
本文解析了Elasticsearch Serverless在智能日志分析领域的关键技术、优势及应用价值。
云栖实录 | GenAI 时代 AI Infra 工程技术趋势与平台演进
本文根据2024云栖大会实录整理而成,演讲信息如下: 演讲人:林伟 | 阿里云智能集团研究员、阿里云人工智能平台 PAI 负责人;黄博远|阿里云智能集团资深产品专家、阿里云人工智能平台 PAI 产品负责人 活动:2024 云栖大会 - AI Infra 核心技术专场、人工智能平台 PAI 年度发布专场
DataWorks操作报错合集之使用sql查询报错无权限,是什么原因
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
语雀+通义千问+DataWorks,让AI定期推送每周总结
DataWorks 数据开发提供强大的工作流及调度能力,且近期上线了数据推送节点,这篇文章简单利用 Shell + AI + 数据推送节点来完成每周工作内容总结。
Hive 特殊的数据类型 Array、Map、Struct
在Hive中,`Array`、`Map`和`Struct`是三种特殊的数据类型。`Array`用于存储相同类型的列表,如`select array(1, "1", 2, 3, 4, 5)`会产生一个整数数组。`Map`是键值对集合,键值类型需一致,如`select map(1, 2, 3, "4")`会产生一个整数到整数的映射。`Struct`表示结构体,有固定数量和类型的字段,如`select struct(1, 2, 3, 4)`创建一个无名结构体。这些类型支持嵌套使用,允许更复杂的结构数据存储。例如,可以创建一个包含用户结构体的数组来存储多用户信息
人工智能平台PAI 操作报错合集之pyalink 1.6.1StreamOperator.fromDataframe(out_df, out_schema_str)之后直接连kafka sink会报下面的错误如何解决
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
什么是HDR?HDR与SDR的区别?
HDR(高动态范围)技术是一种近年来变得流行的图像技术,用于拍摄更自然、更真实的影像,尤其在Audio / Visual设备和数码相机等方面得到了广泛应用。在这里,我们将解释HDR技术的具体是什么,HDR与SDR的区别,HDR与4K的关系,以及HDR一般内置在哪些设备中。
什么是代理ip?代理ip的工作原理?代理ip有哪些类型?
当您在互联网上浏览或访问网站时,您的IP地址是您的设备在网络上的唯一标识。通过IP地址,网站和其他在线服务可以追踪您的位置、活动和访问历史。但是,使用IP代理可以帮助您代理本地IP地址,从而增加您的在线隐私和安全。
【玩转数据系列十】利用阿里云机器学习在深度学习框架下实现智能图片分类
伴随着今日阿里云机器学习PAI在云栖大会的重磅发布,快来感受下人工智能的魅力。 一、背景 随着互联网的发展,产生了大量的图片以及语音数据,如何对这部分非结构化数据行之有效的利用起来,一直是困扰数据挖掘工程师的一到难题。
向量维度、距离函数,如何影响召回结果
本文揭示向量检索效果不佳的根源常被误判:问题不在embedding模型本身,而在于被忽视的底层选择——向量维度与距离函数。二者共同定义了“相似性”的本质,而非仅调节精度。维度决定语义表达自由度与错误类型,距离函数(L2/Cosine/Dot)则确立“何为相近”的世界观。二者强耦合,直接塑造召回空间。调参前,先问:你更怕漏召,还是误召?
RAG灵魂第一步:掌握这5种文档切分技巧,轻松让AI“读懂”你的资料库
本文深入浅出解析RAG中至关重要的文档切分技术,详解按句、固定长度、重叠窗口、递归及语义五种主流策略,结合Python手动实现与LangChain框架实战,并提供效果评估方法与调参技巧,助你打造高质量AI问答系统。(239字)
GEO优化核心:高权重新闻信源筛选与AI收录实战指南
在 GEO(搜索引擎地理优化)实操中,新闻信源的质量直接影响内容的 AI 收录率、关键词排名及转化效果。多数开发者面临两大核心问题:1. 低价值信源浪费成本:部分新闻平台价格低廉(30-50 元 / 篇),但发布后未被 AI 抓取,无法为 GEO 排名提供权重支撑;2. 广告属性触发审核拒绝:含联系方式(电话、微信号)的软文易被平台判定为广告,导致审核驳回,影响发布效率。
Dataphin数据服务API行级权限管控解决方案 ——构建企业级数据安全的精细化管控体系
Dataphin数据服务推出行级权限管控功能,解决传统权限管理中用户权限分散、管控复杂等问题。支持直连与代理双模式访问,实现API与SQL权限统一管理,满足金融、零售、医疗等行业对数据访问的精细化控制需求。通过动态权限决策引擎和自动化继承体系,确保数据安全且提升应用开发效率。
大数据时代的智能研发平台需求与阿里云DIDE的定位
阿里云DIDE是一站式智能大数据开发与治理平台,致力于解决传统大数据开发中的效率低、协同难等问题。通过全面整合资源、高度抽象化设计及流程自动化,DIDE显著提升数据处理效率,降低使用门槛,适用于多行业、多场景的数据开发需求,助力企业实现数字化转型与智能化升级。
阿里云 AI 搜索开放平台新功能发布:大模型联网能力上线
阿里云 AI 搜索开放平台此次新增了大模型联网能力,通过集成大语言模型(LLM)和联网搜索技术,为用户提供更智能、更全面的搜索体验。
MCP+Hologres+LLM搭建数据分析Agent
本文探讨了LLM大模型在数据分析领域的挑战,并介绍了Hologres结合MCP协议和LLM搭建数据分析Agent的解决方案。传统LLM存在实时数据接入能力不足、上下文记忆短等问题,而Hologres通过高性能数据分析能力和湖仓一体支持,解决了这些痛点。MCP协议标准化了LLM与外部系统的连接,提升集成效率。文中详细描述了如何配置Hologres MCP Server与Claude Desktop集成,并通过TPC-H样例数据展示了分析流程和效果。最后总结指出,该方案显著提高了复杂分析任务的实时性和准确性,为智能决策提供支持。
修改 torch和huggingface 缓存路径
简介:本文介绍了如何修改 PyTorch 和 Huggingface Transformers 的缓存路径。通过设置环境变量 `TORCH_HOME` 和 `HF_HOME` 或 `TRANSFORMERS_CACHE`,可以在 Windows、Linux 和 MacOS 上指定自定义缓存目录。具体步骤包括设置环境变量、编辑 shell 配置文件、移动现有缓存文件以及创建符号链接(可选)。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。