通义千问Qwen-72B-Chat基于PAI的低代码微调部署实践

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 本文将以 Qwen-72B-Chat 为例,介绍如何通过PAI平台的快速开始(PAI-QuickStart)部署和微调千问大模型。

1.引言


通义千问-72B(Qwen-72B)是阿里云研发的通义千问大模型系列的720亿参数规模模型。Qwen-72B的预训练数据类型多样、覆盖广泛,包括大量网络文本、专业书籍、代码等。Qwen-72B-Chat是在Qwen-72B的基础上,使用对齐机制打造的基于大语言模型的AI助手。

阿里云人工智能平台PAI是面向开发者和企业的机器学习/深度学习平台,提供AI开发全链路服务。快速开始(PAI-QuickStart)是阿里云人工智能平台PAI的产品组件,它集成了国内外 AI 开源社区中优质的预训练模型,支持零代码和 SDK 的方式实现从训练到部署再到推理的全过程,大大简化了模型的开发和部署,为开发者和企业用户带来了更快、更高效、更便捷的 AI 开发和应用体验。

本文将以 Qwen-72B-Chat 为例,介绍如何通过PAI平台的快速开始(PAI-QuickStart)部署和微调千问大模型。


2.运行环境要求


  • 本示例目前仅支持在阿里云乌兰察布地域,使用灵骏集群环境运行。
  • 资源配置要求:GPU 推荐使用 GU108(80GB),推理需要4卡及以上资源,微调需要4机32卡及以上资源。
  • 阿里云 PAI 灵骏智算服务资源开通和管理请参考官网文档:

灵骏智算资源的开通购买


3.通过PAI控制台使用模型


开发者可以在 PAI 控制台的“快速开始”入口,找到 Qwen-72B-Chat 的模型,Qwen-72B-Chat 的模型卡片如下图所示:

image.png

3.1模型部署和调用

通过“模型部署”入口,用户选择使用的灵骏资源信息,点击部署按钮,即可将模型部署到 PAI-EAS 推理服务平台。

image.png

通过部署的在线服务的详情页,用户可以查看服务访问地址(Endpoint)和访问凭证(Token),然后用于调用推理HTTP API。使用 cURL 调用推理服务的示例如下。

注意,因为模型较大,加载时间较长,用户可以在服务启动之后,通过以下的“查看模型列表”API查看服务当前加载完成的模型。

# 请注意替换为使用服务的Endpoint和TokenexportAPI_ENDPOINT="<ENDPOINT>"exportAPI_TOKEN="<TOKEN>"# 查看模型listcurl$API_ENDPOINT/v1/models \
-H"Content-Type: application/json" \
-H"Authorization: Bearer $API_TOKEN"# 调用通用的文本生成APIcurl$API_ENDPOINT/v1/completions \
-H"Content-Type: application/json" \
-H"Authorization: Bearer $API_TOKEN" \
-d'{"model": "qwen-72b-chat",
"prompt": "San Francisco is a",
"max_tokens": 256,
"temperature": 0,
"stop": ["<|im_end|>", "<|im_start|>"]
}'# 调用对话APIcurl$API_ENDPOINT/v1/chat/completions \
-H"Authorization: Bearer $API_TOKEN" \
-H"Content-Type: application/json" \
-d'{"model": "qwen-72b-chat",
"messages": [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "介绍一下上海的历史"}
      ],
"stop": ["<|im_end|>", "<|im_start|>"]
}'

用户也可以通过 openai SDK 的方式进行调用,首先需要安装调用SDK:

# 安装服务调用SDKpython-mpipinstallopenai

通过 SDK 调用服务的示例如下,请注意替换代码中使用的访问地址和访问凭证。

importopenai# 请使用服务详情页获取的访问地址(ENDPOINT)和访问凭证(TOKEN)替换以下代码的配置。openai.api_key="<TOKEN>"openai.base_url="<ENDPOINT>"+"/v1"# 调用对话APIcompletion=openai.chat.completions.create(
model="qwen-72b-chat",
temperature=0.0,
top_p=0.8,
frequency_penalty=0.0,
messages=[{"role": "user", "content": "请介绍下你自己。"}],
stop=["<|im_end|>", "<|im_start|>"],
# stream=True,)
# 打印输出内容print(completion.choices[0].message.content)

3.2模型微调训练

PAI-QuickStart 支持的 Qwen-72B-Chat 的全量参数微调基于 Megatron-LM 的训练流程,支持了数据并行、算子拆分、流水并行、序列并行、选择性激活重算、Zero显存优化等技术,大幅提升大模型分布式训练效率。在这一算法组件中,我们提前对模型Checkpoint进行了切分,适配多机多卡环境训练,开发者只需根据格式要求准备训练集和验证集,配置任务超参数或是使用模型预置的默认超参,就可以一键拉起训练任务。

微调算法的超参支持如下:

超参数

类型

默认值

是否必须

描述

learning_rate

Float

1e-05

True

用于控制模型权重更新的步长。

min_learning_rate

Float

1e-05

True

最小学习速率是在使用动态调整学习速率策略时设置的下限。

sequence_length

Int

2048

True

序列长度是指模型在一次训练中处理的输入数据的长度。

save_interval

Int

1000

True

保存间隔是指模型在训练过程中每隔多少迭代次数保存一次模型状态。

train_iters

Int

2000

True

训练迭代次数是指模型在整个训练过程中将完成的总迭代次数。

learning_rate_warmup_iters

Int

0

True

学习速率预热迭代次数是指在训练开始的一段时间内,学习速率将逐渐从较低值增加到预设的学习速率的过程中所经过的迭代次数。

通过模型详情的“微调训练”入口,我们可以根据实际需求调整超参数,例如learning_rate、sequence_length、train_iters等,如下所示:

image.png

算法的训练和验证数据集接受Json格式输入,每条数据由问题、答案组成,分别用"instruction"和"output"字段表示,例如:

[
    {
"instruction": "写一首以“寓居夜感”为题的诗:",
"output": "独坐晚凉侵,客窗秋意深。风沙疑化雾,夜气欲成霖。家务劳人倦,浓茶代酒斟。哀鸿鸣四野,一并助长吟。"     },
    {
"instruction": "写一首以“次答友人思乡诗”为题的诗:",
"output": "阅尽沧桑万事空,何如归卧夕阳中。并州最是伤心地,四十馀年噩梦同。"     }
]

用户可以通过将数据准备到到OSS Bucket上,然后在“数据集”配置中选择使用。

image.png

当前算法仅支持使用灵骏资源进行训练,在提交训练作业之前,用户需要配置使用的灵骏资源ID。

在完成以上配置之后,点击“训练”按钮,PAI-QuickStart自动跳转到模型训练页面,并且开始进行训练,用户可以查看训练任务状态和训练日志,如下所示:

image.png

在训练结束后,可以在输出路径的OSS Bucket中查看每次保存的Checkpoint模型切片,如下所示:

image.png

用户可以根据实际情况,选择最合适的Checkpoint进行推理和部署,具体流程参见这里,本文不再赘述。


4.通过PAI Python SDK使用模型


PAI-QuickStart 提供的预训练模型,也支持通过PAI Python SDK进行调用,详细流程可以参考文档:使用预训练模型 — PAI Python SDK

我们首先需要安装和配置PAI Python SDK,开发者可以在命令行执行以下代码完成。

# 安装PAI Python SDKpython-mpipinstallalipai--upgrade# 交互式得配置访问凭证、PAI工作空间等信息python-mpai.toolkit.config

如何获取 SDK 配置所需的访问凭证(AccessKey),PAI 工作空间等信息请参考文档:如何安装和配置PAI Python SDK

4.1模型部署和调用

通过 PAI Python SDK 提供的便利方法,开发者通过数行代码,即可将 Qwen-72B-Chat 模型部署到 PAI-EAS,创建一个在线推理服务。

frompai.sessionimportget_default_sessionfrompai.modelimportRegisteredModelsession=get_default_session()
# 获取PAI QuickStart 提供的qwen-72b-chat模型m=RegisteredModel(
model_name="qwen-72b-chat",
model_provider="pai",
)
# 部署推理服务predictor=m.deploy(
service_name="qwen_72b_chat_{}".format(random_str(6)),
options={
# 资源配额ID"metadata.quota_id": "<LingJunResourceQuotaId>",
"metadata.quota_type": "Lingjun",
"metadata.workspace_id": session.workspace_id,
    }
)
# 查看服务的Endpoint和Tokenendpoint=predictor.internet_endpointtoken=predictor.access_token

模型服务的调用,请参考以上章节,在此不再赘述。

4.2模型微调训练

通过 SDK 获取 PAI QuickStart 提供的预训练模型之后,我们可以查看模型配置的微调算法,包括算法支持的超参配置以及输入输出数据。

frompai.modelimportRegisteredModel# 获取PAI QuickStart 提供的Qwen-72b-Chat模型m=RegisteredModel(
model_name="qwen-72b-chat",
model_provider="pai",
)
# 获取模型配置的微调算法est=m.get_estimator()
# 查看算法支持的超参,以及算法输入输出信息print(est.hyperparameter_definitions)
print(est.input_channel_definitions)

目前,Qwen-72B-Chat 提供的微调算法仅支持灵骏资源,开发者需要通过 PAI 的控制台页面,查看当前的资源配额 ID,设置训练任务使用的资源信息。同时在提交训练作业之前,用户可以根据算法的超参支持,配置合适的训练任务超参。

# 配置训练作业使用的灵骏资源配额IDest.resource_id="<LingjunResourceQuotaId>"# 配置训练作业超参hps= {
"learning_rate": 1e-5,
"save_interval": 500,
}
est.set_hyperparameters(**hps)

微调算法支持3个输入,分别为:

  1. model:Qwen-72b-Chat预训练模型
  2. train:微调使用的训练数据集
  3. validation:微调使用的验证数据集
# 查看模型微调算法的使用的输入信息print(m.get_estimator_inputs())
# {#     "model": "oss://pai-quickstart-cn-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/huggingface/models/qwen-72b-chat/megatron/",#     "train": "oss://pai-quickstart-cn-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/huggingface/datasets/llm_instruct/ch_poetry_train.json",#     "validation": "oss://pai-quickstart-cn-wulanchabu.oss-cn-wulanchabu-internal.aliyuncs.com/huggingface/datasets/llm_instruct/ch_poetry_test.json",# }

开发者可以参考以上的训练数据格式准备数据,然后将trainvalidation输入替换为自己的训练和验证数据集,即可轻松得提交模型微调训练作业。通过 SDK 打印的训练作业链接,用户可以在 PAI 的控制台上查看训练进度详情以及日志信息。

frompai.common.oss_utilsimportdownload# 获取算法的输入数据,包括具体的模型和供测试的公共读数据集.training_inputs=m.get_estimator_inputs()
# 替换使用开发者自己的训练数据# training_inputs["train"] = "oss://<BucketName>/path/to/train/data.json"# training_inputs["validation"] = "oss://<BucketName>/path/to/validation/data.json"# 提交训练作业,并等待到训练作业结束est.fit(
inputs=training_inputs)
# 查看保存在OSS Bucket上的模型路径print(est.model_data())
# 用户可以通过ossutils,或是SDK提供的便利方法下载相应的模型到本地download(est.model_data())


5.结论


阿里云 PAI-QuickStart 提供了对 Qwen-72B-Chat 模型微调训练和部署开箱即用的体验,简化了 AI 开发流程,帮助开发者和企业用户使用大语言模型加速创新,创造更多的价值。


6.相关资料


相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1月前
|
存储 人工智能 运维
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
199 48
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
12天前
|
API 开发工具 Python
阿里云PAI部署DeepSeek及调用
本文介绍如何在阿里云PAI EAS上部署DeepSeek模型,涵盖7B模型的部署、SDK和API调用。7B模型只需一张A10显卡,部署时间约10分钟。文章详细展示了模型信息查看、在线调试及通过OpenAI SDK和Python Requests进行调用的步骤,并附有测试结果和参考文档链接。
1938 9
阿里云PAI部署DeepSeek及调用
|
7天前
|
机器学习/深度学习 人工智能 开发者
DeepSeek服务器繁忙?拒绝稍后再试!基于阿里云PAI实现0代码一键部署DeepSeek-V3和DeepSeek-R1大模型
阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模型部署,享受高效便捷的AI开发体验。具体步骤包括开通PAI服务、进入控制台选择模型、一键部署并获取调用信息。整个过程无需编写代码,极大简化了模型应用的门槛。
140 7
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
97 20
|
1月前
|
人工智能 自然语言处理 BI
蓝凌aiKM,双能驱动场景变革:蓝凌知识管理平台和通义千问共建实践
蓝凌aiKM通过双能驱动场景变革,结合蓝凌知识管理平台与通义千问大模型,助力企业构建智能“大脑”。aiKM不仅提升知识管理效率,还赋能业务场景,如新人培训、营销支持和流程优化。蓝博士产品整合专属内容与大模型能力,提供智能搜索、问答及推荐服务,帮助企业高效利用私域知识资产,推动数字化转型。蓝凌在AI时代致力于激活企业新生产力,打造知识护城河,成为核心竞争力。
|
1月前
|
编解码 Cloud Native 算法
通义万相:视觉生成大模型再进化
通义万相是阿里云推出的视觉生成大模型,涵盖图像和视频生成。其2.0版本在文生图和文生视频方面进行了重大升级,采用Diffusion Transformer架构,提升了模型的灵活性和可控性。通过高质量美学标准和多语言支持,大幅增强了画面表现力。此外,视频生成方面引入高压缩比VAE、1080P长视频生成及多样化艺术风格支持,实现了更丰富的创意表达。未来,通义万相将继续探索视觉领域的规模化和泛化,打造更加通用的视觉生成大模型。
|
1月前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
238 22
|
2月前
|
关系型数据库 机器人 OLAP
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验
PolarDB开源社区推出基于云原生数据仓库AnalyticDB和通义千问大模型的“PolarDB知识问答助手”,实现一站式全链路RAG能力,大幅提升查询效率和问答准确率。该系统整合静态和动态知识库,提供高效的数据检索与查询服务,支持多种场景下的精准回答,并持续优化用户体验。欢迎加入钉群体验并提出宝贵意见。
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验

热门文章

最新文章

相关产品

  • 人工智能平台 PAI