人工智能平台PAI 操作报错合集之机器学习PAI,用Triton Inference Server 22.05 部署模型,遇到SaveV3这个op的问题,如何解决

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。

问题一:如下 请问机器学习PAI的这些问题怎么解决?

请问在使用批组件的时候,我在代码开始指定了批处理组件的并行数量为8,在对OneHotTrainBatchOp()实例化时numThreads的默认值为1,我没有修改组件的numThreads值,那么在OneHotTrainBatchOp()处理数据的时候的线程数是多少呢?parallelism参数的设置和numThreads都是指的线程数嘛?



参考答案:

parallelism是线程数,训练的Op一般没有numThreads

parallelism是并发度,numThreads是每个mapper里的并发



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/567631



问题二:机器学习PAI-EAS 部署Pytorch模型失败怎么办?

机器学习PAI-EAS 部署Pytorch模型失败怎么办?



参考答案:

如果您的机器学习PAI-EAS部署Pytorch模型失败了,可以尝试以下几种方法:

  1. 检查模型文件:确保只上传了一个模型文件,没有重复或冗余的文件;删除任何重复或冗余的模型文件;确保文件命名唯一。
  2. 检查服务配置:确保您的服务资源配置(如内存、CPU、GPU等)足够满足模型的需求;检查网络设置,确保服务所在的VPC和其他服务可以互相通信。
  3. 查看日志:在EAS的服务详情页中查看日志,查看日志中是否有异常信息;尝试使用调试模式,以便更好地定位问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566863



问题三:想问下机器学习PAI,遇到SaveV3这个op的问题,该怎么解决呢?

想问下机器学习PAI,用Triton Inference Server 22.05 部署模型,遇到SaveV3这个op的问题,该怎么解决呢?



参考答案:

你部署Triton的时候的tensorflow.so 需要换成DeepRec的so



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566710



问题四:机器学习PAI 在用onednn option 来编译deeprec 的时候, 这是怎么一回事呢?

机器学习PAI 在用onednn option 来编译deeprec 的时候, 遇到了 mkl_threadpool 未在任何.rc 文件定义,这是怎么一回事呢?如何解决呢?configure的时候需要加什么 option 吗?



参考答案:

你试试 grep mkl_threadpool .bazelrc,你试试重新运行一下 ./configure, 正常情况是会配置好这类bazel的config选项的



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566708



问题五:机器学习PAI这个是什么问题,能帮忙分析下吗?

机器学习PAI这个是什么问题,能帮忙分析下吗?



参考答案:

你修改过 config,模型 model_dir 没有清空,加载了之前的 config 的模型就报错了。需要把 model_dir 清空一下。不清空,配置一个新的路径,也可以,就是注意生成的这个路径都是关联的,包括训练,导出,以及最后的模型部署任务。如果要修改 路径的话,记得后面的这些任务都要修改一下。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566664

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
6天前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
43 18
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
20天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
12天前
|
机器学习/深度学习 人工智能 算法
阿里云人工智能平台图像视频特征提取
本文介绍了图像与视频特征提取技术在人工智能和计算机视觉中的应用,涵盖图像质量评分、人脸属性分析、年龄分析、图像多标签打标、图文视频动态分类打标、视频质量评分及视频分类打标。通过深度学习模型如CNN和RNN,这些技术能从海量数据中挖掘有价值信息,为图像分类、目标检测、视频推荐等场景提供支持,提升分析精度与效率。
80 9
|
1月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
93 27
|
1月前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
18天前
|
并行计算 PyTorch 算法框架/工具
阿里云PAI-部署Qwen2-VL-72B
阿里云PAI-部署Qwen2-VL-72B踩坑实录
|
24天前
|
数据采集 人工智能 智能设计
首个!阿里云人工智能平台率先通过国际标准认证
首个!阿里云人工智能平台率先通过国际标准认证
84 7
|
21天前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
57 12

相关产品

  • 人工智能平台 PAI