SPARK中的FileSourceStrategy,DataSourceStrategy以及DataSourceV2Strategy规则

简介: SPARK中的FileSourceStrategy,DataSourceStrategy以及DataSourceV2Strategy规则

背景

本文基于SPARK 3.3.0

用于记录Spark中V1和V2的Datasource以及FileSource的作用以及区别,以及在Spark 3.3.0出现的更强的Datasource v2 JDBC的下推


分析

在spark 3.3.0中 出现了DS V2 push down的功能,该功能是能够更好的进行下推,比如说更加复杂的聚合下推和过滤下推。


v1中的DataSource和FileSource下推

这里就得提及到V1中的 DataSourceStrategy 和 FileSourceStrategy 这两个Rule。

其中FileSourceStrategy主要针对的是hdfs文件,比如说是hive表的转换,具体可见这里,

会把相应的LogicalRelation 转换为FileSourceScanExec

FileSourceScanExec(
          fsRelation,
          outputAttributes,
          outputSchema,
          partitionKeyFilters.toSeq,
          bucketSet,
          None,
          dataFilters,
          table.map(_.identifier))

涉及到filter过滤的地方为partitionKeyFilters 和dataFilters,partitionKeyFilters针对的是分区级别的过滤,比如说只选择某个个分区,或者动态分区裁剪涉及的分区,dataFilters涉及到非分区的列的过滤,这样在读取文件的时候,就会进行对应的过滤,如下:


  @transient lazy val selectedPartitions: Array[PartitionDirectory] = {
   ...
  @transient private lazy val dynamicallySelectedPartitions: Array[PartitionDirectory] = {
   ...
lazy val inputRDD: RDD[InternalRow] = {
    val readFile: (PartitionedFile) => Iterator[InternalRow] =
      relation.fileFormat.buildReaderWithPartitionValues(
        sparkSession = relation.sparkSession,
        dataSchema = relation.dataSchema,
        partitionSchema = relation.partitionSchema,
        requiredSchema = requiredSchema,
        filters = pushedDownFilters,
        options = relation.options,
        hadoopConf = relation.sparkSession.sessionState.newHadoopConfWithOptions(relation.options))
    val readRDD = if (bucketedScan) {
      createBucketedReadRDD(relation.bucketSpec.get, readFile, dynamicallySelectedPartitions,
        relation)
    } else {
      createReadRDD(readFile, dynamicallySelectedPartitions, relation)
    }
    sendDriverMetrics()
    readRDD
  }


这样在读取文件的时候,就只会读取对应的分区,从而减少IO,

而 dataFilters的用处就在于


private lazy val pushedDownFilters = {
    val supportNestedPredicatePushdown = DataSourceUtils.supportNestedPredicatePushdown(relation)
    // `dataFilters` should not include any metadata col filters
    // because the metadata struct has been flatted in FileSourceStrategy
    // and thus metadata col filters are invalid to be pushed down
    dataFilters.filterNot(_.references.exists {
      case FileSourceMetadataAttribute(_) => true
      case _ => false
    }).flatMap(DataSourceStrategy.translateFilter(_, supportNestedPredicatePushdown))
  }

pushedDownFilters 会在具体读取数据的时候,进行过滤。对于不同的FileFormat有不同的处理方式


对于DataSourceStrategy,是处理使用source api的定义的Data Source,会把对应的LogicalRelation转换为RowDataSourceScanExec:


def apply(plan: LogicalPlan): Seq[execution.SparkPlan] = plan match {
    case ScanOperation(projects, filters, l @ LogicalRelation(t: CatalystScan, _, _, _)) =>
      pruneFilterProjectRaw(
        l,
        projects,
        filters,
        (requestedColumns, allPredicates, _) =>
          toCatalystRDD(l, requestedColumns, t.buildScan(requestedColumns, allPredicates))) :: Nil
...

其中pruneFilterProjectRaw有方法:

 val candidatePredicates = filterPredicates.map { _ transform {
      case a: AttributeReference => relation.attributeMap(a) // Match original case of attributes.
    }}
 val (unhandledPredicates, pushedFilters, handledFilters) =
      selectFilters(relation.relation, candidatePredicates)

selectFilters 就会把对应的Catalyst的Filters转换为data source Filters,

 val scan = RowDataSourceScanExec(
        requestedColumns,
        requestedColumns.toStructType,
        pushedFilters.toSet,
        handledFilters,
        PushedDownOperators(None, None, None, Seq.empty, Seq.empty),
        scanBuilder(requestedColumns, candidatePredicates, pushedFilters),
        relation.relation,
        relation.catalogTable.map(_.identifier))
      filterCondition.map(execution.FilterExec(_, scan)).getOrElse(scan)

这样pushedFilters就会传入scanBuilder作为scanBuilder的参数进行datasource级别的过滤

  • v2 中的 Datasource 下推
  • 目前从实现来看,支持JDBC Parquet Orc类型的下推(需要设置一下SQLConf.USE_V1_SOURCE_LIST),这里的实现和V1的不一样,DataSourceV2Strategy 只是做的物理计划的转换,对于下推操作是在优化rule V2ScanRelationPushDown中完成的:
object V2ScanRelationPushDown extends Rule[LogicalPlan] with PredicateHelper with AliasHelper {
  import DataSourceV2Implicits._
  def apply(plan: LogicalPlan): LogicalPlan = {
    val pushdownRules = Seq[LogicalPlan => LogicalPlan] (
      createScanBuilder,
      pushDownSample,
      pushDownFilters,
      pushDownAggregates,
      pushDownLimits,
      pruneColumns)
    pushdownRules.foldLeft(plan) { (newPlan, pushDownRule) =>
      pushDownRule(newPlan)
    }
  }

这里面就涉及到了filter和aggregate等下推的判断,

其中createScanBuilder会创建一个ScanBuilderHolder,在pushDownFilters中会调用pushFilters方法,从而调用scanBuilder的pushPredicates方法从而把需要下推的谓词给记录下来,如JDBCScanBuilder

override def build(): Scan = {
    val resolver = session.sessionState.conf.resolver
    val timeZoneId = session.sessionState.conf.sessionLocalTimeZone
    val parts = JDBCRelation.columnPartition(schema, resolver, timeZoneId, jdbcOptions)
    // the `finalSchema` is either pruned in pushAggregation (if aggregates are
    // pushed down), or pruned in pruneColumns (in regular column pruning). These
    // two are mutual exclusive.
    // For aggregate push down case, we want to pass down the quoted column lists such as
    // "DEPT","NAME",MAX("SALARY"),MIN("BONUS"), instead of getting column names from
    // prunedSchema and quote them (will become "MAX(SALARY)", "MIN(BONUS)" and can't
    // be used in sql string.
    JDBCScan(JDBCRelation(schema, parts, jdbcOptions)(session), finalSchema, pushedPredicate,
      pushedAggregateList, pushedGroupBys, tableSample, pushedLimit, sortOrders)
  }

pruneColumns方法中会进行scan的构建, 这样在DataSourceV2Strategy规则的时候就会使用该scan构建对应的RDD:


override def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {
    case PhysicalOperation(project, filters, DataSourceV2ScanRelation(
      _, V1ScanWrapper(scan, pushed, pushedDownOperators), output, _)) =>
      val v1Relation = scan.toV1TableScan[BaseRelation with TableScan](session.sqlContext)
      if (v1Relation.schema != scan.readSchema()) {
        throw QueryExecutionErrors.fallbackV1RelationReportsInconsistentSchemaError(
          scan.readSchema(), v1Relation.schema)
      }
      val rdd = v1Relation.buildScan()
      val unsafeRowRDD = DataSourceStrategy.toCatalystRDD(v1Relation, output, rdd)
      val dsScan = RowDataSourceScanExec(
        output,
        output.toStructType,
        Set.empty,
        pushed.toSet,
        pushedDownOperators,
        unsafeRowRDD,
        v1Relation,
        tableIdentifier = None)
      withProjectAndFilter(project, filters, dsScan, needsUnsafeConversion = false) :: Nil
....
case class JDBCScan(
    relation: JDBCRelation,
    prunedSchema: StructType,
    pushedPredicates: Array[Predicate],
    pushedAggregateColumn: Array[String] = Array(),
    groupByColumns: Option[Array[String]],
    tableSample: Option[TableSampleInfo],
    pushedLimit: Int,
    sortOrders: Array[SortOrder]) extends V1Scan {
  override def readSchema(): StructType = prunedSchema
  override def toV1TableScan[T <: BaseRelation with TableScan](context: SQLContext): T = {
    new BaseRelation with TableScan {
      override def sqlContext: SQLContext = context
      override def schema: StructType = prunedSchema
      override def needConversion: Boolean = relation.needConversion
      override def buildScan(): RDD[Row] = {
        val columnList = if (groupByColumns.isEmpty) {
          prunedSchema.map(_.name).toArray
        } else {
          pushedAggregateColumn
        }
        relation.buildScan(columnList, prunedSchema, pushedPredicates, groupByColumns, tableSample,
          pushedLimit, sortOrders)
      }
    }.asInstanceOf[T]
  }

看到对于JDBC的谓词下推,是调用toV1TableScan方法tableScan构建,之后再调用buildScan构建RDD,最后再构建RowDataSourceScanExec 物理计划,这样就完成了V2 Datasource的下推。

对于Parquet和Orc的下推,可以参考:


case PhysicalOperation(project, filters, relation: DataSourceV2ScanRelation) =>
      // projection and filters were already pushed down in the optimizer.
      // this uses PhysicalOperation to get the projection and ensure that if the batch scan does
      // not support columnar, a projection is added to convert the rows to UnsafeRow.
      val (runtimeFilters, postScanFilters) = filters.partition {
        case _: DynamicPruning => true
        case _ => false
      }
      val batchExec = BatchScanExec(relation.output, relation.scan, runtimeFilters,
        relation.keyGroupedPartitioning)
      withProjectAndFilter(project, postScanFilters, batchExec, !batchExec.supportsColumnar) :: Nil


v1 v2 Datasource下推的区别

V1中的下推在构建对应的scan 物理计划的时候一并生成的,而在V2中是单独在V2ScanRelationPushDown规则中进行构建,而在物理计划生成阶段只是调用生成RDD的方法。


对于SQLConf.USE_V1_SOURCE_LIST的解释

默认SQLConf.USE_V1_SOURCE_LIST的值为avro,csv,json,kafka,orc,parquet,text,这几个FileDataSource都是继承FileDataSourceV2:

trait FileDataSourceV2 extends TableProvider with DataSourceRegister {
  /**
   * Returns a V1 [[FileFormat]] class of the same file data source.
   * This is a solution for the following cases:
   * 1. File datasource V2 implementations cause regression. Users can disable the problematic data
   *    source via SQL configuration and fall back to FileFormat.
   * 2. Catalog support is required, which is still under development for data source V2.
   */
  def fallbackFileFormat: Class[_ <: FileFormat]
  lazy val sparkSession = SparkSession.active


这里的fallbackFileFormat中的注释说的比较清楚,当然也可以参考SPARK-28396里的评论,具体的回退规则是在FallBackFileSourceV2 Rule中:

/* Replace the File source V2 table in InsertIntoStatement to V1 FileFormat. E.g, with temporary view t using    
   org.apache.spark.sql.execution.datasources.v2.FileDataSourceV2, inserting into view t fails since there is no   
   corresponding physical plan. This is a temporary hack for making current data source V2 work. It should be 
   removed when Catalog support of file data source v2 is finished.*/
class FallBackFileSourceV2(sparkSession: SparkSession) extends Rule[LogicalPlan] {
  override def apply(plan: LogicalPlan): LogicalPlan = plan resolveOperators {
    case i @ InsertIntoStatement(
        d @ DataSourceV2Relation(table: FileTable, _, _, _, _), _, _, _, _, _) =>
      val v1FileFormat = table.fallbackFileFormat.newInstance()
      val relation = HadoopFsRelation(
        table.fileIndex,
        table.fileIndex.partitionSchema,
        table.schema,
        None,
        v1FileFormat,
        d.options.asScala.toMap)(sparkSession)
      i.copy(table = LogicalRelation(relation))
  }
}


相关文章
|
8月前
|
分布式计算 并行计算 大数据
Spark学习---day02、Spark核心编程(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(一)
Spark学习---day02、Spark核心编程 RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(一)
416 1
|
8月前
|
分布式计算 Java Scala
Spark学习---day03、Spark核心编程(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(二)
Spark学习---day03、Spark核心编程(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(二)
103 1
|
存储 分布式计算 并行计算
Spark学习---2、SparkCore(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(一)
Spark学习---2、SparkCore(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(一)
|
8月前
|
分布式计算 并行计算 Hadoop
Spark学习---day02、Spark核心编程(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(一)
Spark学习---day02、Spark核心编程 RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(一)
134 1
|
存储 分布式计算 对象存储
Spark学习---2、SparkCore(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(二)
Spark学习---2、SparkCore(RDD概述、RDD编程(创建、分区规则、转换算子、Action算子))(二)
|
SQL 分布式计算 HIVE
SPARK统计信息的来源-通过优化规则来分析
SPARK统计信息的来源-通过优化规则来分析
615 0
SPARK统计信息的来源-通过优化规则来分析
|
SQL 存储 分布式计算
spark outer join push down filter rule(spark 外连接中的下推规则)
spark outer join push down filter rule(spark 外连接中的下推规则)
291 0
spark outer join push down filter rule(spark 外连接中的下推规则)
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
203 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
3月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
85 0