实时计算 Flink版产品使用问题之使用Spark ThriftServer查询同步到Hudi的数据时,如何实时查看数据变化

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:flink cdc哪个版本有sqlserverCatalog,能根据表名拿到对应的字段和字段类型?

flink cdc哪个版本有sqlserverCatalog,能根据表名拿到对应的字段和字段类型?



参考答案:

你指的是flink-connector-jdbc吧,这个是连接器的特性,1.17的好像就支持了



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584664



问题二:flink cdc 每次都要重新在datagrip里面新开一个窗口才能看到数据的变化,为什么?

用spark thriftserver 查询flink cdc 同步到hudi的数据的时候,每次都要重新在datagrip里面新开一个spark query窗口才能看到数据的变化?



参考答案:

你这个是spark 的session 模式导致的bug吧,试下 refresh下 hudi的table呢



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584662



问题三:阿里flink云服务,如何使用这种CDC整库?有没有案例?

阿里flink云服务,如何使用这种CDC整库?有没有案例?



参考答案:

直接用cdas就行了



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/584660



问题四:Flink这个 busy 是啥意思?

Flink这个 busy 是啥意思?



参考答案:

在Flink中,"busy"是指一个subtask的消费速率低于上游的生产,这个subtask的InputChannel buffer会被撑满,然后上游subtask的负责转发数据的nettyServer会收到消息,停止发送数据,直到上游subtask的ResultPartition撑满,上游的算子就被背压了。在这种情况下,一个subtask/算子是否背压和他本身的处理情况没有直接关系,而是取决于下游是否有subtask的处理速度一直低于输入速率;换言之,取决于下游算子的busy time。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586039



问题五:有人接过influxDB吗?Flink这里为什么没有提供setHost()?

有人接过influxDB吗?Flink这里为什么没有提供setHost()?



参考答案:

Flink中InfluxDB Connector的使用需要设置相关参数,包括InfluxDB的主机地址、数据库名称等。对于你提到的setHost()方法,在新版本的Flink InfluxDB Connector中可能已经不再使用。取而代之的是,你可以通过创建InfluxDbConfig对象来设定这些参数。具体来说,你可以这样配置:

public static List < JobLastCheckpointExternalPath > getCheckPoints (String jobId) {
    InfluxDbConfig config = new InfluxDbConfig (); 
    config. setHost ("http://influxdb.slankka.com:8099"); //根据实际情况修改 
    config. setDatabase ("flink"); //根据实际情况修改 
}

在这段代码中,我们首先创建了一个InfluxDbConfig对象,然后调用其setHost()和setDatabase()方法来分别设置InfluxDB的主机地址和数据库名称。需要注意的是,这里的URL是InfluxDB的服务地址,可以是VPC网络地址,例如:https://localhost:8086或http://localhost:3242。此外,这个模块与InfluxDB 1.3.x版本兼容。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/586026

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
1518 1
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
920 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
8月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
929 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
12月前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
469 17
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
348 1
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
294 0
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之同步时,上游批量删除大量数据(如20万条),如何提高删除效率
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
存储 缓存 分布式计算
开发者社区精选直播合集(二十二)| Spark与其他产品的实践
Apache Spark是专为大规模数据处理而设计的快速通用的计算引擎,它可在多场景多产品中运用,本期大咖实践分享,带你直观感受它的优越性。
开发者社区精选直播合集(二十二)|  Spark与其他产品的实践
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
332 0
|
9月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
429 79

相关产品

  • 实时计算 Flink版