目录
基于《wonderland爱丽丝梦游仙境记》小说数据集利用LSTM算法(基于keras)对word实现预测
基于《wonderland爱丽丝梦游仙境记》小说数据集利用LSTM算法(基于keras)对word实现预测
设计思路
更新……
输出结果
1. rawtext_BySpaceConnect: ALICE'S ADVENTURES IN WONDERLAND Lewis Carroll THE MILLENNIUM FULCRUM EDITION 3.0 CHAPTER I. Down the Rabbit-Hole Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, 'and what is the use of a book,' thought Alice 'without pictures or conversations?' So she was considering in her own mind (as well as she could, for the hot day 2. rawtext2WordLists: ["ALICE'S", 'ADVENTURES', 'IN', 'WONDERLAND', 'Lewis', 'Carroll', 'THE', 'MILLENNIUM', 'FULCRUM', 'EDITION', '3.0', 'CHAPTER', 'I', 'Down', 'the', 'Rabbit-Hole', 'Alice', 'was', 'beginning', 'to', 'get', 'very', 'tired', 'of', 'sitting', 'by', 'her', 'sister', 'on', 'the', 'bank', 'and', 'of', 'having', 'nothing', 'to', 'do', 'once', 'or', 'twice', 'she', 'had', 'peeped', 'into', 'the', 'book', 'her', 'sister', 'was', 'reading', 'but', 'it', 'had', 'no', 'pictures', 'or', 'conversations', 'in', 'it', 'and', 'what', 'is', 'the', 'use', 'of', 'a', 'book', 'thought', 'Alice', 'without', 'pictures', 'or', 'conversations', 'So', 'she', 'was', 'considering', 'in', 'her', 'own', 'mind', 'as', 'well', 'as', 'she', 'could', 'for', 'the', 'hot', 'day', 'made', 'her', 'feel', 'very', 'sleepy', 'and', 'stupid', 'whether', 'the', 'pleasure', 'of', 'making', 'a', 'daisy-chain', 'would', 'be', 'worth', 'the', 'trouble', 'of', 'getting', 'up', 'and', 'picking', 'the', 'daisies', 'when', 'suddenly', 'a', 'White', 'Rabbit', 'with', 'pink', 'eyes', 'ran', 'close', 'by', 'her', 'There', 'was', 'nothing', 'so', 'VERY', 'remarkable', 'in', 'that', 'nor', 'did', 'Alice', 'think', 'it', 'so', 'VERY', 'much', 'out', 'of', 'the', 'way', 'to', 'hear', 'the', 'Rabbit', 'say', 'to', 'itself', 'Oh', 'dear', 'Oh', 'dear', 'I', 'shall', 'be', 'late', 'when', 'she', 'thought', 'it', 'over', 'afterwards', 'it', 'occurred', 'to', 'her', 'that', 'she', 'ought', 'to', 'have', 'wondered', 'at', 'this', 'but', 'at', 'the', 'time', 'it', 'all', 'seemed', 'quite', 'natural', 'but', 'when', 'the', 'Rabbit', 'actually', 'TOOK', 'A', 'WATCH', 'OUT', 'OF', 'ITS', 'WAISTCOAT-POCKET', 'and', 'looked', 'at', 'it', 'and', 'then', 'hurried', 'on', 'Alice', 'started', 'to', 'her', 'feet', 'for', 'it', 'flashed', 'across', 'her', 'mind', 'that', 'she', 'had', 'never', 'before', 'seen', 'a', 'rabbit', 'with', 'either', 'a', 'waistcoat-pocket', 'or', 'a', 'watch', 'to', 'take', 'out', 'of', 'it', 'and', 'burning', 'with', 'curiosity', 'she', 'ran', 'across', 'the', 'field', 'after', 'it', 'and', 'fortunately', 'was', 'just', 'in', 'time', 'to', 'see', 'it', 'pop', 'down', 'a', 'large', 'rabbit-hole', 'under', 'the', 'hedge', 'In', 'another', 'moment', 'down', 'went', 'Alice', 'after', 'it', 'never', 'once', 'considering', 'how', 'in', 'the', 'world', 'she', 'was', 'to', 'get', 'out', 'again', 'The', 'rabbit-hole', 'went', 'straight', 'on', 'like', 'a', 'tunnel', 'for', 'some', 'way', 'and', 'then', 'dipped', 'suddenly', 'down', 'so', 'suddenly', 'that', 'Alice', 'had', 'not', 'a', 'moment', 'to', 'think', 'about', 'stopping', 'herself', 'before', 'she', 'found', 'herself', 'falling', 'down', 'a', 'very', 'deep', 'well', 'Either', 'the', 'well', 'was', 'very', 'deep', 'or', 'she', 'fell', 'very', 'slowly', 'for', 'she', 'had', 'plenty', 'of', 'time', 'as', 'she', 'went', 'down', 'to', 'look', 'about', 'her', 'and', 'to', 'wonder', 'what', 'was', 'going', 'to', 'happen', 'next', 'First', 'she', 'tried', 'to', 'look', 'down', 'and', 'make', 'out', 'what', 'she', 'was', 'coming', 'to', 'but', 'it', 'was', 'too', 'dark', 'to', 'see', 'anything', 'then', 'she', 'looked', 'at', 'the', 'sides', 'of', 'the', 'well', 'and', 'noticed', 'that', 'they', 'were', 'filled', 'with', 'cupboards', 'and', 'book-shelves', 'here', 'and', 'there', 'she', 'saw', 'maps', 'and', 'pictures', 'hung', 'upon', 'pegs', 'She', 'took', 'down', 'a', 'jar', 'from', 'one', 'of', 'the', 'shelves', 'as', 'she', 'passed', 'it', 'was', 'labelled', 'ORANGE', 'MARMALADE', 'but', 'to', 'her', 'great', 'disappointment', 'it', 'was', 'empty', 'she', 'did', 'not', 'like', 'to', 'drop', 'the', 'jar', 'for', 'fear', 'of', 'killing', 'somebody', 'so', 'managed', 'to', 'put', 'it', 'into', 'one', 'of', 'the', 'cupboards', 'as', 'she', 'fell', 'past', 'it', 'Well', 'thought', 'Alice', 'to', 'herself', 'after', 'such', 'a', 'fall', 'as', 'this', 'I', 'shall', 'think', 'nothing', 'of', 'tumbling', 'down', 'stairs', 'How', 'brave', "they'll", 'all', 'think', 'me', 'at', 'home', 'Why', 'I', "wouldn't", 'say'] 3. rawtext_BySpace: ALICE'S ADVENTURES IN WONDERLAND Lewis Carroll THE MILLENNIUM FULCRUM EDITION 3.0 CHAPTER I Down the Rabbit Hole Alice was beginning to get very tired of sitting by her sister on the bank and of having nothing to do once or twice she had peeped into the book her sister was reading but it had no pictures or conversations in it and what is the use of a book thought Alice without pictures or conversations So she was considering in her own mind as well as she could for the hot day made her feel very 4. words_num: 26694 5. vocab_num: 3063 6. dataX: 26594 100 [[19, 18, 238, 547, 278, 84, 469, 294, 160, 133, 16, 74, 227, 125, 2713, 393, 223, 31, 2932, 769, 2773, 1456, 2905, 2770, 2006, 2500, 862, 1569, 2495, 2019, 2713, 733, 660, 2006, 1543, 1988, 2773, 1144, 2020, 2035, 2841, 2434, 1513, 2091, 1663, 2713, 810, 1569, 2495, 2932, 2258, 856, 1675, 1513, 1977, 2111, 2035, 1006, 1640, 1675, 660, 2960, 1673, 2713, 2886, 2006, 594, 810, 2741, 31, 3004, 2111, 2035, 1006, 440, 2434, 2932, 996, 1640, 1569, 2051, 1897, 701, 2954, 701, 2434, 1012, 1402, 2713, 1603, 1083, 1847, 1569, 1328, 2905, 2513, 660, 2637, 2969, 2713], [18, 238, 547, 278, 84, 469, 294, 160, 133, 16, 74, 227, 125, 2713, 393, 223, 31, 2932, 769, 2773, 1456, 2905, 2770, 2006, 2500, 862, 1569, 2495, 2019, 2713, 733, 660, 2006, 1543, 1988, 2773, 1144, 2020, 2035, 2841, 2434, 1513, 2091, 1663, 2713, 810, 1569, 2495, 2932, 2258, 856, 1675, 1513, 1977, 2111, 2035, 1006, 1640, 1675, 660, 2960, 1673, 2713, 2886, 2006, 594, 810, 2741, 31, 3004, 2111, 2035, 1006, 440, 2434, 2932, 996, 1640, 1569, 2051, 1897, 701, 2954, 701, 2434, 1012, 1402, 2713, 1603, 1083, 1847, 1569, 1328, 2905, 2513, 660, 2637, 2969, 2713, 2144], [238, 547, 278, 84, 469, 294, 160, 133, 16, 74, 227, 125, 2713, 393, 223, 31, 2932, 769, 2773, 1456, 2905, 2770, 2006, 2500, 862, 1569, 2495, 2019, 2713, 733, 660, 2006, 1543, 1988, 2773, 1144, 2020, 2035, 2841, 2434, 1513, 2091, 1663, 2713, 810, 1569, 2495, 2932, 2258, 856, 1675, 1513, 1977, 2111, 2035, 1006, 1640, 1675, 660, 2960, 1673, 2713, 2886, 2006, 594, 810, 2741, 31, 3004, 2111, 2035, 1006, 440, 2434, 2932, 996, 1640, 1569, 2051, 1897, 701, 2954, 701, 2434, 1012, 1402, 2713, 1603, 1083, 1847, 1569, 1328, 2905, 2513, 660, 2637, 2969, 2713, 2144, 2006], [547, 278, 84, 469, 294, 160, 133, 16, 74, 227, 125, 2713, 393, 223, 31, 2932, 769, 2773, 1456, 2905, 2770, 2006, 2500, 862, 1569, 2495, 2019, 2713, 733, 660, 2006, 1543, 1988, 2773, 1144, 2020, 2035, 2841, 2434, 1513, 2091, 1663, 2713, 810, 1569, 2495, 2932, 2258, 856, 1675, 1513, 1977, 2111, 2035, 1006, 1640, 1675, 660, 2960, 1673, 2713, 2886, 2006, 594, 810, 2741, 31, 3004, 2111, 2035, 1006, 440, 2434, 2932, 996, 1640, 1569, 2051, 1897, 701, 2954, 701, 2434, 1012, 1402, 2713, 1603, 1083, 1847, 1569, 1328, 2905, 2513, 660, 2637, 2969, 2713, 2144, 2006, 1851], [278, 84, 469, 294, 160, 133, 16, 74, 227, 125, 2713, 393, 223, 31, 2932, 769, 2773, 1456, 2905, 2770, 2006, 2500, 862, 1569, 2495, 2019, 2713, 733, 660, 2006, 1543, 1988, 2773, 1144, 2020, 2035, 2841, 2434, 1513, 2091, 1663, 2713, 810, 1569, 2495, 2932, 2258, 856, 1675, 1513, 1977, 2111, 2035, 1006, 1640, 1675, 660, 2960, 1673, 2713, 2886, 2006, 594, 810, 2741, 31, 3004, 2111, 2035, 1006, 440, 2434, 2932, 996, 1640, 1569, 2051, 1897, 701, 2954, 701, 2434, 1012, 1402, 2713, 1603, 1083, 1847, 1569, 1328, 2905, 2513, 660, 2637, 2969, 2713, 2144, 2006, 1851, 594]] 7. dataY: 26594 [2144, 2006, 1851, 594, 1074] 8. Total patterns: 26594 9. X_train.shape (26594, 100, 1) 10. Y_train.shape (26594, 3063) 11. _________________________________________________________________ 12. Layer (type) Output Shape Param # 13. ================================================================= 14. lstm_1 (LSTM) (None, 256) 264192 15. _________________________________________________________________ 16. dropout_1 (Dropout) (None, 256) 0 17. _________________________________________________________________ 18. dense_1 (Dense) (None, 3063) 787191 19. ================================================================= 20. Total params: 1,051,383 21. Trainable params: 1,051,383 22. Non-trainable params: 0 23. _________________________________________________________________ 24. LSTM_Model 25. None 26. 27. 28. …… 29. 30. Epoch 00005: loss improved from 6.26403 to 6.26198, saving model to hdf5/word-weights-improvement-05-6.2620.hdf5 31. Epoch 6/10 32. 33. 128/26594 [..............................] - ETA: 2:09 - loss: 6.8378 34. 256/26594 [..............................] - ETA: 2:06 - loss: 6.4136 35. 384/26594 [..............................] - ETA: 2:01 - loss: 6.3299 36. 512/26594 [..............................] - ETA: 1:57 - loss: 6.4469 37. 640/26594 [..............................] - ETA: 1:57 - loss: 6.4133 38. 39. …… 40. 41. Epoch 00008: loss improved from 6.25725 to 6.25487, saving model to hdf5/word-weights-improvement-08-6.2549.hdf5 42. Epoch 9/10 43. 44. 128/26594 [..............................] - ETA: 1:57 - loss: 6.2336 45. 256/26594 [..............................] - ETA: 2:02 - loss: 6.1897 46. 384/26594 [..............................] - ETA: 2:04 - loss: 6.3229 47. 512/26594 [..............................] - ETA: 2:01 - loss: 6.3550 48. 640/26594 [..............................] - ETA: 2:02 - loss: 6.3279 49. 768/26594 [..............................] - ETA: 2:05 - loss: 6.2614 50. 896/26594 [>.............................] - ETA: 2:06 - loss: 6.2433 51. 1024/26594 [>.............................] - ETA: 2:07 - loss: 6.2477 52. …… 53. 54. 25216/26594 [===========================>..] - ETA: 6s - loss: 6.2456 55. 25344/26594 [===========================>..] - ETA: 6s - loss: 6.2469 56. 25472/26594 [===========================>..] - ETA: 5s - loss: 6.2477 57. 25600/26594 [===========================>..] - ETA: 4s - loss: 6.2486 58. 25728/26594 [============================>.] - ETA: 4s - loss: 6.2480 59. 25856/26594 [============================>.] - ETA: 3s - loss: 6.2483 60. 25984/26594 [============================>.] - ETA: 2s - loss: 6.2487 61. 26112/26594 [============================>.] - ETA: 2s - loss: 6.2485 62. 26240/26594 [============================>.] - ETA: 1s - loss: 6.2483 63. 26368/26594 [============================>.] - ETA: 1s - loss: 6.2482 64. 26496/26594 [============================>.] - ETA: 0s - loss: 6.2485 65. 26594/26594 [==============================] - 129s 5ms/step - loss: 6.2499 66. 67. Epoch 00009: loss improved from 6.25487 to 6.24987, saving model to hdf5/word-weights-improvement-09-6.2499.hdf5 68. Epoch 10/10 69. 70. 128/26594 [..............................] - ETA: 1:56 - loss: 6.4864 71. 256/26594 [..............................] - ETA: 2:04 - loss: 6.2577 72. 384/26594 [..............................] - ETA: 2:07 - loss: 6.2857 73. 512/26594 [..............................] - ETA: 2:10 - loss: 6.3230 74. …… 75. 76. 25856/26594 [============================>.] - ETA: 3s - loss: 6.2426 77. 25984/26594 [============================>.] - ETA: 3s - loss: 6.2447 78. 26112/26594 [============================>.] - ETA: 2s - loss: 6.2446 79. 26240/26594 [============================>.] - ETA: 1s - loss: 6.2449 80. 26368/26594 [============================>.] - ETA: 1s - loss: 6.2467 81. 26496/26594 [============================>.] - ETA: 0s - loss: 6.2461 82. 26594/26594 [==============================] - 135s 5ms/step - loss: 6.2465 83. 84. 85. 86. Epoch 00010: loss improved from 6.24987 to 6.24646, saving model to hdf5/word-weights-improvement-10-6.2465.hdf5 87. LSTM_Pre_word.shape: 88. (3, 3063) 89. 90. 91. 92. 93. 94. LSTM_Model,Seed: 95. " cheerfully he seems to grin How neatly spread his claws And welcome little fishes in With gently smiling jaws I'm sure those are not the right words said poor Alice and her eyes filled with tears again as she went on I must be Mabel after all and I shall have to go and live in that poky little house and have next to no toys to play with and oh ever so many lessons to learn No I've made up my mind about it if I'm Mabel I'll stay down here It'll be no use their putting their heads " 96. 199 100 97. 98. Generated Sequence: 99. the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the 100. 101. Done. 102. 103. 104.
核心代码
1. LSTM_Model = Sequential() 2. LSTM_Model.add(LSTM(256, input_shape=(X_train.shape[1], X_train.shape[2]))) 3. LSTM_Model.add(Dropout(0.2)) 4. LSTM_Model.add(Dense(Y_train.shape[1], activation='softmax')) 5. LSTM_Model.compile(loss='categorical_crossentropy', optimizer='adam') 6. print('LSTM_Model \n',LSTM_Model.summary())