「AIGC算法」将word文档转换为纯文本

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 使用Node.js模块`mammoth`和`html-to-text`,该代码示例演示了如何将Word文档(.docx格式)转换为纯文本以适应AIGC的文本识别。流程包括将Word文档转化为HTML,然后进一步转换为纯文本,进行格式调整,并输出到控制台。转换过程中考虑了错误处理。提供的代码片段展示了具体的实现细节,包括关键库的导入和转换函数的调用。

本文主要介绍将word文档转换为纯文本,适用于AIGC文本识别功能的整合。

一、设计思路

  • 使用mammoth 实现Word文档转HTML内容
  • 使用html-to-text 实现HTML内容转换为纯文本
  • 文本按需格式化处理,文本输出

    二、核心代码

const mammoth = require("mammoth");
const fs = require("fs");
const path = require("path");
const { convert } = require("html-to-text");
// 替换为你的Word文档的路径
const docxPath = path.join(__dirname, "example.docx");

mammoth
  .convertToHtml({
    path: docxPath,
  })
  .then(function (result) {
    // result.value 是转换后的HTML内容
    // result.messages 是转换过程中的警告和错误信息

    // 使用html-to-text将HTML内容转换为纯文本
    const options = {
      wordwrap: 130,
      hideLinkHrefIfSameAsText: true,
      // ...
    };
    const html = result.value;
    let plaintext = convert(html, options);
    plaintext = plaintext.replace(/\n\n/g,'\n'); // 省流
    // 输出纯文本内容
    console.log(JSON.stringify(plaintext));
    console.log('---------------------'+plaintext.length+'------------------------')

  })
  .catch(function (error) {
    // 处理可能发生的错误
    console.error("转换过程中发生错误:", error);
  });
相关文章
|
3月前
|
数据采集 算法 数据可视化
基于Python的k-means聚类分析算法的实现与应用,可以用在电商评论、招聘信息等各个领域的文本聚类及指标聚类,效果很好
本文介绍了基于Python实现的k-means聚类分析算法,并通过微博考研话题的数据清洗、聚类数量评估、聚类分析实现与结果可视化等步骤,展示了该算法在文本聚类领域的应用效果。
|
2月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
49 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
3月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
157 0
|
4月前
|
机器学习/深度学习 自然语言处理 算法
AIGC技术的核心算法与发展趋势
【7月更文第27天】随着人工智能技术的迅速发展,AIGC技术已经逐渐成为内容创造领域的一个重要组成部分。这些技术不仅能够帮助人们提高工作效率,还能创造出以往难以想象的新颖内容。本文将重点介绍几种核心算法,并通过一个简单的代码示例来展示如何使用这些算法。
115 7
|
4月前
|
机器学习/深度学习 数据采集 算法
Python基于KMeans算法进行文本聚类项目实战
Python基于KMeans算法进行文本聚类项目实战
179 19
|
3月前
|
算法 数据可视化 搜索推荐
基于python的k-means聚类分析算法,对文本、数据等进行聚类,有轮廓系数和手肘法检验
本文详细介绍了基于Python实现的k-means聚类分析算法,包括数据准备、预处理、标准化、聚类数目确定、聚类分析、降维可视化以及结果输出的完整流程,并应用该算法对文本数据进行聚类分析,展示了轮廓系数法和手肘法检验确定最佳聚类数目的方法。
101 0
|
4月前
|
存储 监控 算法
「AIGC算法」大数据架构Lambda和Kappa
**Lambda与Kappa架构对比:** Lambda提供批处理和实时处理,保证数据最终一致性,但维护复杂。Kappa简化为单一流处理,易于维护,适合实时场景,但可能增加实时处理压力,影响稳定性。选择时考虑数据一致性、系统维护、成本和实时性需求。
98 0
「AIGC算法」大数据架构Lambda和Kappa
|
4月前
|
存储 传感器 算法
「AIGC算法」近邻算法原理详解
**K近邻(KNN)算法概述:** KNN是一种基于实例的分类算法,依赖于训练数据的相似性。算法选择最近的K个邻居来决定新样本的类别,K值、距离度量和特征归一化影响性能。适用于非线性数据,但计算复杂度高,适合小数据集。应用广泛,如推荐系统、医疗诊断和图像识别。通过scikit-learn库可实现分类,代码示例展示了数据生成、模型训练和决策边界的可视化。
43 0
「AIGC算法」近邻算法原理详解
|
4月前
|
机器学习/深度学习 自然语言处理 算法
「AIGC算法」深度神经网络
**深度神经网络(DNNs)**是多层人工神经网络,用于图像识别、语音识别和自然语言处理等。它们通过输入层、隐藏层和输出层学习数据的复杂模式。工作流程涉及前向传播、激活函数(如ReLU)、权重更新(通过反向传播)和损失函数优化。应用广泛,包括图像和语音识别、推荐系统和医学分析。例如,用TensorFlow和Keras构建的DNN可识别MNIST手写数字。Python在数据分析、自动化、网络爬虫、文件管理和机器学习等任务中也发挥着关键作用。
65 0
|
4月前
|
机器学习/深度学习 算法 调度
「AIGC算法」爬山算法详解
**爬山算法是迭代求解优化问题的局部搜索方法,从随机解开始,逐步向邻域内更优解移动,直至达到局部极值。特点包括简单性、可能陷入局部最优和依赖初始解。应用包括调度、路径规划和参数调优。改进策略如随机重启、模拟退火和多起始点可帮助跳出局部最优。主要挑战是局部最优、平坦区域和高维问题。**
186 0